egg hatching
Recently Published Documents


TOTAL DOCUMENTS

657
(FIVE YEARS 227)

H-INDEX

34
(FIVE YEARS 5)

2024 ◽  
Vol 84 ◽  
Author(s):  
G. S. Isaac ◽  
M. M. El-Deriny ◽  
R. G. Taha

Abstract Root-knot nematode Meloidogyne incognita is among the biotic factors which has greatly affected both the yield and the quality of the tomato crop. The egg parasitic nematode, Purpureocillium lilacinum (Pl) is considered as one of the most promising agents in controlling and overcoming this plant pathogen. The nematicidal effect of the native isolate Pl AUMC 10149 on second stage juvenile’s survival and egg hatching of M. incognita at different times of exposure was tested in vitro. The obtained data showed that Pl gave a maximum percentage of J2 mortality (97.6%) and egg hatching inhibition (79.8%) after 72 hours of exposure. The potentiality of Pl as well as Bio-Nematon to control M. incognita infecting tomato was conducted using different times of application in vivo. Nine treatments with five replicates were used for such bioagents compared with the nematicide Oxamyl. Each seedling was inoculated with 1000 J2s of nematode/pot and 10 mL of Pl (1x1010 CFU/mL) or Bio-Nematon spore suspension (1x108 CFU/mL) 10mL/pot. The results indicated that the most effective treatments in reducing nematode population, number of galls and egg masses of M. incognita in plant roots was performed with treatment by Pl pre-planting and post-infection with Pl (Rf 1.9) giving a significant enhancement in plant length (64.9%), fresh weight (72.52%) and shoot dry weight (163.41%) without negatively impacting environment. Therefore, the present study confirmed that using P. lilacinum AUMC 10149 can be used as a practical supplement to environmentally friendly disease management of root-knot nematodes in Egypt.


2022 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Lucía Guzmán ◽  
Jorge Luis Malla ◽  
Jorge Ramírez ◽  
Gianluca Gilardoni ◽  
James Calva ◽  
...  

Control measures against common cattle tick Rhipicephalus microplus are of the upmost importance because of considerable, deleterious impact on a farm’s economy. Due to resistance phenomena to synthetic acaricides being a constraint in affected farms, the search for plant derivatives as acaricides has increased dramatically in recent years. In this work, essential oils obtained from two Ecuadorian plants, Ambrosia peruviana and Lepechinia mutica (EOAp, EOLm), traditionally used as insecticides in indigenous communities, were studied on larvae and engorged females at the parasitic stages of R. microplus. Larvae and females were treated with five (0.0625, 0.125, 0.25, 0.50 and 1%) and six concentrations (0.125, 0.25, 0.50, 1, 2 and 4%), respectively, of each EOsAp/Lm. A 98–99% larval mortality was achieved with 0.5% of both EOsAp/Lm. EOAp inhibited oviposition and egg hatching up to 82% and 80%, respectively, and had an overall efficacy of 93.12%. Efficacy of EOLm was 72.84%, due to the low influence of EOLm on reproductive parameters. By steam distillation and GC-MS analysis, γ-Curcumene was identified as the main constituent (52.02%) in the EOAp and Shyobunol (10.80%) in EOLm. The results suggest that major components of both essential oils should be further studied as promissory acaricides against R. microplus.


2022 ◽  
Author(s):  
André C. de Oliveira ◽  
Rejane C. Simões ◽  
Carlos A. P. Lima ◽  
Felipe M. A. da Silva ◽  
Sergio M. Nunamura ◽  
...  

Abstract The mosquitoes vectors of the genus Aedes and Anopheles present resistance to several commercial insecticides, which are also toxic to non-predators targets. On the other hand, essential oils are a promising source of insecticides. Thus, in this work, the essential oil from the leaves of Piper purusanum was characterized by gas chromatography based approaches and evaluated as biodefensive against malaria and dengue vectors. The main compounds of P. purusanum essential oil were β-caryophyllene (57.05%), α-humulene (14.50%) and germacrene D (8.20%). The essential oil inhibited egg hatching (7.6 ± 1.5 to 95.6 ± 4.5%) caused larval death (LC50 from 49.84 to 51.60 ppm) and inhibited the action of acetylcholinesterase (IC50 of 2.29 µg/mL), which can be related to the mechanisms of action. On the other hand, the biological activity of β-caryophyllene, α-humulene and germacrene D were higher than the essential oil. In addition, these sesquiterpenes and essential oil did not show a lethal effect on Toxorhynchites splendens, Anisops bouvieri, Gambusia affinis and Diplonychus indicus (LC50 from 2098.80 to 7707.13 ppm), although D. indicus is more sensible (SI/PSF from 48.56 to 252.02 ppm) to essential oil, representing a natural alternative against these relevant vectors.


2021 ◽  
Vol 9 (33) ◽  
pp. 156-164
Author(s):  
Zilda Cristiani Gazim ◽  
Fabiana Borges Padilha Ferreira ◽  
Aristeu Vieira Da Silva ◽  
Kelly Cristina Bolognese ◽  
Ewerton Merlin ◽  
...  

Background: cattle tick Rhipicephalus (Boophilus) microplus poses serious problems for farmers in Brazil, especially because the parasite easily develops resistance to pesticide agents. For this reason, together with other factors including environmental, human and animal contamination and costs, alternative approaches have been sought for. Aims: this study sough to evaluate the efficiency of a tick biotherapic on tick-infested cows. Methods: 34 dairy Dutch cows were divided in 2 groups: one group received 100g/day of mineral salt supplement impregnated with tick biotherapic 12cH for 6 months, and then in alternate days with tick biotherapic 30cH to complete 28 months of treatment; the other group (control) received only the mineral salt supplement. After 28 months of treatment, engorged Rhipicephalus (boophilus) microplus females were collected in both groups, counted and weighed; in vitro tests were carried out to assess mass of ticks; egg mass; egg-hatching rate; and reproductive efficiency. Results: There was significant difference between both groups for all parameters evaluated; tick-mass (p = 0.0008); egg mass (p=0.0044); egg-hatching rate (p= 0.0017); and reproductive efficiency (p = 0.0044). Conclusion: treatment with tick biotherapic significantly decreased the mass of engorged females, deposition and hatching rate of eggs, resulting consequently in the decrease of the reproductive efficiency of ticks.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Thi Hanh Nguyen ◽  
San-Lang Wang ◽  
Manh Dung Doan ◽  
Thi Huyen Nguyen ◽  
Thi Ha Trang Tran ◽  
...  

This study aimed to reuse groundnut oil processing by-product, groundnut cake (GNC) for the low-cost production of prodigiosin (PG) via microbial technology and to assess its novel potential application for the management of black pepper nematodes. Serratia marcescens TUN02 was found as the most active PG-producing strain. Various small-scale experiments conducted in flasks indicated that GNC at 1% may be used as the sole carbon/nitrogen source for cost-effective PG production by fermentation. Notably, no further commercial ingredients and salts are required to supplement into the culture medium of this fermentation. PG was further investigated for scale-up production in a 14-L bioreactor system and PG was produced at high yield (6886 mg/L) with large-scale volume (4 L) in a short cultivation time (10 h). PG was then purified and its nematicidal activity was evaluated and showed effective inhibition of juveniles and egg hatching of Meloidogyne incognita species, harmful on black pepper, with low IC50 values of 0.2 and 0.32 mg/mL, respectively. The simple medium containing 1% GNC is the first report of cost-effective biosynthesis of PG, as well as potential in vitro anti-egg hatching activity of PG. These results indicated the potential application of GNC for low-cost bioproduction of PG for promising and novel use in the management of black pepper nematodes.


2021 ◽  
Author(s):  
Phung Thi Kim Hue ◽  
Le Tri Vien ◽  
Dau Minh Nga ◽  
Le Van Truong ◽  
Hoang Ha ◽  
...  

Background: Dengue fever and Zika are two of the Aedes-borne diseases. Despite being widely used, synthetic mosquitocides become abortive for the mosquito control due to growing resistance and environmental pollution. In Gia Lai province (dengue-endemic area), a huge amount of cashew nut shell waste with roughly 100,000 tons/year has been disposed of into the environment, potentiating a high risk of pollution. Methodology/Principal findings: To utilize it, anacardic acid was extracted and combined it with ethanol extract of the local lime peel, which contains limonene, to generate APL formulation. APL robustly exhibited inhibition of egg hatching, larvicidal effect, and repellent effect against female mosquitoes from oviposition sites in the laboratory and field. The results showed that, at a dose of 12.5 ppm, the APL formulation after 24 hours of treatment demonstrated oviposition deterrence against Ae. aegypti (43.6%) and Ae. albopictus (59.6%); inhibited egg hatching of Ae. aegypti (49.6%) and Ae. albopictus (59.6%); caused larval lethality in Ae. aegypti (LC 50 = 9.5 ppm, LC 90 = 21 ppm) and Ae. albopictus (LC 50 = 7.6 ppm, LC 90 = 18 ppm). Under natural field conditions, it showed a 100% reduction in larval density after 48 and 72 hours of the APL treatment at a tested concentration of 120 mg a.i./m 2 and maintained a mortality rate of 100% in the next 14 days. Conclusions/Significance: The APL formulation is promisingly to become an environmentally friendly and highly effective biological product for future management programs of dengue and Zika-transmitting vectors. Here offer prospects in controlling critical illnesses transmitted by several mosquito species in dengue-endemic areas.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Camus ◽  
Lucrezia Rolla ◽  
Jufeng Jiang ◽  
Chaoshu Zeng

The optimization of copepod feeding protocol is paramount to improve culture productivity and to maintain favorable water quality parameters overtime, as well as saving operational costs by preventing the production of unnecessary quantities of microalgae. The influence of microalgal feeding concentration on major parameters related to culture productivity of the calanoid copepod Bestiolina similis (Paracalanidae) was investigated in a series of laboratory experiments. B. similis was fed eight different concentrations (0, 150, 300, 600, 900, 1,200, 1,500 and 1,800 μgC l–1) of a mixed microalgal diet consisting of Tahitian strain of Isochrysis species, Pavalova 50 and Tetraselmis chuii at 1:1:1 carbon ratio. The results indicate that female daily and cumulative egg production over lifespan, egg hatching rate, naupliar and copepodite survival and development, adult female life expectancy, population growth and fecal pellet production rate (FPPR) were all significantly affected by microalgae feeding ration. Conversely, no significant influence could be established between microalgae food concentration and egg diameter or adult sex ratio. Feeding rations as low as 150 μgC l–1 led to lower egg hatching rates, survival and development, adult female life expectancy and population growth compared with the higher microalgae rations tested. Feeding concentration ≤ 900 μgC l–1 significantly limited female daily egg and fecal pellet production rate, as well as their cumulative egg production over lifespan, when compared to a level of 900 μgC l–1. Bestiolina similis fed with 1,200 μgC l–1 significantly improved female egg and fecal pellet production when compared to the lower treatments and was responsible for the highest female lifespan egg production and population growth observed among all treatments. Feeding rations as high as 1,500 μgC l–1 and 1,800 μgC l–1 did not lead to significant improvement in any of the parameters measured. This is likely due to a saturation effect at high food concentration which is known to decrease calanoid copepods feeding efficiency. Finally, B. similis FPPR, used as a proxy for ingestion, was found to saturate at a microalgae concentration of 783.4 μgC l–1 using a non-linear Michael-Menton (2 parameters), indicating that CVI female ingestion did not increase significantly above this concentration. Based on the above results it is recommended that B. similis cultures should be fed at a concentration of 1,200 μgC l–1, and not above, as rations > 1,200 μgC l–1 will not significantly improve any of the productivity-related parameters observed in this study. Feeding rations should never be below 783.40 μgC l–1 as this is the threshold level below which adult female ingestion rates become limiting.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Markéta Zajíčková ◽  
Lukáš Prchal ◽  
Martina Navrátilová ◽  
Nikola Vodvárková ◽  
Petra Matoušková ◽  
...  

AbstractHaemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Oliveira ◽  
Caroline Sprengel Lima ◽  
Setha Ketavong ◽  
Eulogio J. Llorent-Martínez ◽  
Hervé Hoste ◽  
...  

AbstractStrategies to reduce dependence on synthetic drugs for the treatment of gastrointestinal nematodes (GIN) infections in ruminants include the search for novel anthelmintic scaffolds on plants, yet salt-tolerant plants remain overlooked. This study aims to evaluate the in vitro anthelmintic properties of selected salt-tolerant plants against GIN, and identify the potential bioactive secondary metabolites involved. For that purpose, 80% acetone/water extracts were prepared from dried biomass of aerial organs of nine salt-tolerant plant species and tested against Haemonchus contortus and Trichostrongylus colubriformis by the Larval Exsheathment Inhibition Assay (LEIA) and Egg Hatching Inhibition Assay (EHIA). Pistacia lentiscus, Limoniatrum monopetalum, Cladium mariscus and Helychrisum italicum picardi were the most active in both GIN and life stages. To investigate the role of polyphenols in the anthelmintic activity, four selected extracts were treated with polyvinylpolypyrrolidone (PVPP), and non-treated and treated samples were further characterized by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn). While polyphenols seem responsible for the EHIA properties, they are partially accountable to LEIA results. Several phenolics involved in the anthelmintic effects were identified and discussed. In sum, these species are rich sources of anthelmintic compounds and, therefore, are of major interest for nutraceutical and/or phytotherapeutic applications against GIN in ruminants.


Sign in / Sign up

Export Citation Format

Share Document