Nervous Diseases and Muscular Dystrophies. Part IV. On Pseudohypertrophic and Allied Types of Progressive Muscular Dystrophy. The Treasury of Human Inheritance, Volume IV. Julia Bell

1947 ◽  
Vol 22 (4) ◽  
pp. 334-335
Author(s):  
Arthur G. Steinberg
2021 ◽  
Vol 22 (10) ◽  
pp. 5276
Author(s):  
Coralie Croissant ◽  
Romain Carmeille ◽  
Charlotte Brévart ◽  
Anthony Bouter

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.


1989 ◽  
Vol 27 (3) ◽  
pp. 45-54
Author(s):  
Akihiko OGASAWARA ◽  
Kazumi KOHMURA ◽  
Mitsuhiro MIYAZAKI ◽  
Youichi USHIDA ◽  
Shingo YAMAUCHI

Nature ◽  
1974 ◽  
Vol 249 (5453) ◽  
pp. 173-174 ◽  
Author(s):  
M. MAEBASHI ◽  
N. KAWAMURA ◽  
K. YOSHINAGA

Sign in / Sign up

Export Citation Format

Share Document