Correlates of Species Richness in Mammals: Body Size, Life History, and Ecology

2005 ◽  
Vol 165 (5) ◽  
pp. 600-607 ◽  
Author(s):  
Nick J. B. Isaac ◽  
Kate E. Jones ◽  
John L. Gittleman ◽  
Andy Purvis
2005 ◽  
Vol 165 (5) ◽  
pp. 600
Author(s):  
Nick J. B. Isaac ◽  
Jones ◽  
Gittleman ◽  
Purvis

2014 ◽  
Vol 147 (4) ◽  
pp. 396-404 ◽  
Author(s):  
James R.N. Glasier ◽  
Scott E. Nielsen ◽  
John H. Acorn

AbstractOver two summers following accidental May wildfires, total ant (Hymenoptera: Formicidae) forager catch and species richness did not change in jack pine woodlands on sand hills in central Alberta, Canada. However, one year after a fire, smaller ants, and those in smaller colonies, were more abundant in pitfall traps, based on analysis of response ratios for each ant species and relationships to a variety of life history and organismal traits. Nest type and polygyny had no effect on post-fire ant forager catch. The numerical responses of individual ant species appear to be idiosyncratic, but three species of ants that are sand specialists were found to be particularly resilient to fire.


1999 ◽  
Vol 266 (1422) ◽  
pp. 933-939 ◽  
Author(s):  
Ian P. F. Owens ◽  
Peter M. Bennett ◽  
Paul H. Harvey

2018 ◽  
Vol 49 (1) ◽  
pp. 379-408 ◽  
Author(s):  
Roger B.J. Benson

Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.


2021 ◽  
Author(s):  
Kha Sach Ngo ◽  
Berta R‐Almási ◽  
Zoltán Barta ◽  
Jácint Tökölyi

2018 ◽  
Vol 285 (1880) ◽  
pp. 20180744 ◽  
Author(s):  
Yifan Pei ◽  
Mihai Valcu ◽  
Bart Kempenaers

Being active at different times facilitates the coexistence of functionally similar species. Hence, time partitioning might be induced by competition. However, the relative importance of direct interference and indirect exploitation competition on time partitioning remains unclear. The aim of this study was to investigate the relative importance of these two forms of competition on the occurrence of time-shifting among avian predator species. As a measure of interference competition pressure, we used the species richness of day-active avian predator species or of night-active avian predator species (i.e. species of Accipitriformes, Falconiformes and Strigiformes) in a particular geographical area (assemblage). As an estimate of exploitation competition pressure, we used the total species richness of avian predators in each assemblage. Estimates of the intensity of interference competition robustly predicted the number of Accipitriformes species that became crepuscular and the number of Strigiformes species that became day-active or strictly crepuscular. Interference competition pressure may depend on body size and on the total duration of the typical active period (day or night length). Our results support—to some extent—that smaller species are more likely to become time-shifters. Day length did not have an effect on the number of time-shifter species in the Accipitriformes. Among the large Strigiformes, more time-shifter species occur in areas where nights are shorter (i.e. where less of the typical time resource is available). However, in the small Strigiformes, we found the opposite, counterintuitive effect: more time-shifters where nights are longer. Exploitation competition may have had an additional positive effect on the number of time-shifters, but only in Accipitriformes, and the effect was not as robust. Our results thus support the interference competition hypothesis, suggesting that animals may have shifted their time of activity, despite phylogenetic constraints on the ability to do so, to reduce the costs of direct interactions. Our findings also highlight the influence of body size as a surrogate of competitive ability during encounters on time partitioning, at least among avian predators.


2018 ◽  
Vol 28 (3) ◽  
pp. 315-327 ◽  
Author(s):  
D. R. Barneche ◽  
E. L. Rezende ◽  
V. Parravicini ◽  
E. Maire ◽  
G. J. Edgar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document