avian predator
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Bingjun WANG ◽  
Long YU ◽  
Nina MA ◽  
Zengtao ZHANG ◽  
Deyong GONG ◽  
...  
Keyword(s):  

Zoology ◽  
2021 ◽  
pp. 125987
Author(s):  
Barry P. Stephenson ◽  
Zeshan Velani ◽  
Nikolett Ihász

2021 ◽  
Author(s):  
◽  
Kirsty Yule

<p>Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved.  In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density-dependent competition as infrapopulation size had no effect on long-term larval growth.  Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. In Chapter 3, I investigate larvae host specificity in relation to host nutritional rewards (phloem turnover and phloem sugar content) and host defences (bark thickness and wood density). The number of species parasitized was not explained by tree abundance, nutritional rewards or wood density. However, the number of trees parasitised declined significantly with increasing bark thickness indicating host external defences are an important driver of host specificity.  Camouflage in animals has traditionally been considered an anti-predator adaptation. Yet the adaptive consequences of camouflage, i.e. increased survivability via predator avoidance, has rarely been tested. In Chapter 4, I show that larvae webbing is visually cryptic to predating kaka, yet did not protect larvae from attack. Instead, cryptic webbing aids larvae thermoregulation suggesting crypsis is non-adaptive. These results support an exciting newly emerging paradigm shift that indicates the evolution of camouflage in animals may be more to do with abiotic conditions than biotic signalling.  Males are often the “sicker sex”, experiencing higher pathogen and parasite loads than females. In Chapter 5, I construct the largest host-parasite database to date, spanning 70 animal and 22 plant families, from which I conduct a meta-analysis testing for male biased susceptibility (MBS). Then, I develop a theoretical model that explain MBS as a result of parasite-offspring competition for female resources. I present the first, unified model that explains male-biased susceptibility in animals and plants and provide parameters for model replication, applicable to almost all host-parasite pairings on Earth.  This thesis presents the first investigations of the natural history of Aenetus virescens larvae, their relationships with host trees, and the interactions with their avian predator. The results herein support existing theories of parasite aggregation and host specificity from a novel perspective. Furthermore, results support a newly emerging paradigm shift in animal camouflage evolution, and suggest a unified explanation for male biased susceptibility in animals and plants. The results herein help further our understanding of complex antagonistic relationships between parasites and their hosts, presenting novel theories on which future research can be built.</p>


2021 ◽  
Author(s):  
◽  
Kirsty Yule

<p>Parasites are ubiquitous and the antagonistic relationships between parasites and their hosts shape populations and ecosystems. However, our understanding of complex parasitic interactions is lacking. New Zealand’s largest endemic moth, Aenetus virescens (Lepidoptera: Hepialidae) is a long-lived arboreal parasite. Larvae grow to 100mm, living ~6 years in solitary tunnels in host trees. Larvae cover their tunnel entrance with silk and frass webbing, behind which they feed on host tree phloem. Webbing looks much like the tree background, potentially concealing larvae from predatory parrots who consume larvae by tearing wood from trees. Yet, the ecological and evolutionary relationships between the host tree, the parasitic larvae, and the avian predator remain unresolved.  In this thesis, I use a system-based approach to investigate complex parasite-host interactions using A. virescens (hereafter “larvae”) as a model system. First, I investigate the mechanisms driving intraspecific parasite aggregation (Chapter 2). Overall, many hosts had few parasites and few hosts had many, with larvae consistently more abundant in larger hosts. I found no evidence for density-dependent competition as infrapopulation size had no effect on long-term larval growth.  Host specificity, the number of species utilised from the larger pool available, reflects parasite niche breadth, risk of extinction and ability to colonise new locations. In Chapter 3, I investigate larvae host specificity in relation to host nutritional rewards (phloem turnover and phloem sugar content) and host defences (bark thickness and wood density). The number of species parasitized was not explained by tree abundance, nutritional rewards or wood density. However, the number of trees parasitised declined significantly with increasing bark thickness indicating host external defences are an important driver of host specificity.  Camouflage in animals has traditionally been considered an anti-predator adaptation. Yet the adaptive consequences of camouflage, i.e. increased survivability via predator avoidance, has rarely been tested. In Chapter 4, I show that larvae webbing is visually cryptic to predating kaka, yet did not protect larvae from attack. Instead, cryptic webbing aids larvae thermoregulation suggesting crypsis is non-adaptive. These results support an exciting newly emerging paradigm shift that indicates the evolution of camouflage in animals may be more to do with abiotic conditions than biotic signalling.  Males are often the “sicker sex”, experiencing higher pathogen and parasite loads than females. In Chapter 5, I construct the largest host-parasite database to date, spanning 70 animal and 22 plant families, from which I conduct a meta-analysis testing for male biased susceptibility (MBS). Then, I develop a theoretical model that explain MBS as a result of parasite-offspring competition for female resources. I present the first, unified model that explains male-biased susceptibility in animals and plants and provide parameters for model replication, applicable to almost all host-parasite pairings on Earth.  This thesis presents the first investigations of the natural history of Aenetus virescens larvae, their relationships with host trees, and the interactions with their avian predator. The results herein support existing theories of parasite aggregation and host specificity from a novel perspective. Furthermore, results support a newly emerging paradigm shift in animal camouflage evolution, and suggest a unified explanation for male biased susceptibility in animals and plants. The results herein help further our understanding of complex antagonistic relationships between parasites and their hosts, presenting novel theories on which future research can be built.</p>


2021 ◽  
pp. 119858
Author(s):  
Ever Tallei ◽  
Luis Rivera ◽  
Alejandro Schaaf ◽  
Maila Scheffer ◽  
Natalia Politi

Author(s):  
Ezra Hadad ◽  
Eyal Shochat

Abstract Encounters between birds of prey and porcupines are rarely documented, and so far only in North America. At least 39% of such encounters lead to death of the attacker. We present first evidence for similar encounters between The Eurasian Eagle Owl and the Indian Crested Porcupine, suggesting that young porcupines may occasionally serve as potential prey for the owl.


2021 ◽  
Vol 118 (31) ◽  
pp. e2102859118
Author(s):  
J. David Wiens ◽  
Katie M. Dugger ◽  
J. Mark Higley ◽  
Damon B. Lesmeister ◽  
Alan B. Franklin ◽  
...  

Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before–after control–impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species.


2021 ◽  
Vol 17 (7) ◽  
pp. 20210286
Author(s):  
Barbara Class ◽  
Giulia Masoero ◽  
Julien Terraube ◽  
Erkki Korpimäki

Food-hoarding behaviour is widespread in the animal kingdom and enables predictable access to food resources in unpredictable environments. Within species, consistent variation among individuals in food-hoarding behaviours may indicate the existence of individual strategies, as it likely captures intrinsic differences in how individuals cope with risks (e.g. starvation, pilferage). Using 17 years of data, we estimated the long-term repeatability of 10 food-hoarding behaviours in a population of Eurasian pygmy owls ( Glaucidium passerinum ), a small avian predator subject to high temporal fluctuations in its main prey abundance. We found low repeatability in the proportion of shrews and the average prey mass stored for both sexes, while females were moderately repeatable in the mass and the number of prey items stored. These two pairs of behaviours were tightly correlated among individuals and might represent two different sets of individual strategies to buffer against starvation risks.


Sign in / Sign up

Export Citation Format

Share Document