scholarly journals New Analytical Formulae for Supercritical Accretion Flows

2006 ◽  
Vol 648 (1) ◽  
pp. 523-533 ◽  
Author(s):  
Ken‐ya Watarai
2013 ◽  
Vol 780 (1) ◽  
pp. 79 ◽  
Author(s):  
Xiao-Hong Yang ◽  
Feng Yuan ◽  
Ken Ohsuga ◽  
De-Fu Bu

2015 ◽  
Vol 806 (1) ◽  
pp. 93 ◽  
Author(s):  
Cheng-Liang Jiao ◽  
Shin Mineshige ◽  
Shun Takeuchi ◽  
Ken Ohsuga

2016 ◽  
Vol 823 (2) ◽  
pp. 92 ◽  
Author(s):  
Fatemeh Zahra Zeraatgari ◽  
Shahram Abbassi ◽  
Amin Mosallanezhad

2006 ◽  
Vol 2 (S238) ◽  
pp. 301-304
Author(s):  
Ken Ohsuga

AbstractWe perform the two-dimensional radiation-hydrodynamic simulations to study the radiation pressure-dominated accretion flows around a black hole (BH). Our simulations show that the highly supercritical accretion flow (mass accretion rate is much larger than the critical value) is composed of the disk region and the outflow region above the disk.The radiation force supports the thick disk and drives the outflow. The photon trapping plays an important role within the disk, reducing the disk luminosity. On the other hand, in the case that mass accretion rate moderately exceeds the critical value, we find that the disk is unstable and exhibits the limit-cycle oscillations. The disk oscillations in our simulations nicely fit to the variation amplitude and duration of quasi-periodic luminosity variations observed in the GRS 1915+105 microquasar.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2021 ◽  
Vol 133 (3) ◽  
Author(s):  
Marilena Di Carlo ◽  
Simão da Graça Marto ◽  
Massimiliano Vasile

AbstractThis paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.


Sign in / Sign up

Export Citation Format

Share Document