scholarly journals Discovery of Par 1802 as a Low‐Mass, Pre‐Main‐Sequence Eclipsing Binary in the Orion Star‐Forming Region

2008 ◽  
Vol 674 (1) ◽  
pp. 329-335 ◽  
Author(s):  
P. A. Cargile ◽  
K. G. Stassun ◽  
R. D. Mathieu
2020 ◽  
Vol 495 (2) ◽  
pp. 1531-1548
Author(s):  
Edward Gillen ◽  
Lynne A Hillenbrand ◽  
John Stauffer ◽  
Suzanne Aigrain ◽  
Luisa Rebull ◽  
...  

ABSTRACT We present Mon-735, a detached double-lined eclipsing binary (EB) member of the ∼3 Myr old NGC 2264 star-forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system’s spectral energy distribution to determine self-consistent masses, radii, and effective temperatures for both stars. We find that Mon-735 comprises two pre-main-sequence M dwarfs with component masses of M = 0.2918 ± 0.0099 and 0.2661 ± 0.0095 M⊙, radii of R = 0.762 ± 0.022 and 0.748 ± 0.023 R⊙, and effective temperatures of Teff = 3260 ± 73 and 3213 ± 73 K. The two stars travel on circular orbits around their common centre of mass in P = 1.9751388 ± 0.0000050 d. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass–radius diagram (MRD) and, to a lesser extent, in the Hertzsprung–Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are ∼7–9 and 4–6 Myr, respectively, with the two components in each EB system possessing consistent ages.


2001 ◽  
Vol 200 ◽  
pp. 468-471 ◽  
Author(s):  
E. Covino ◽  
S. Catalano ◽  
A. Frasca ◽  
E. Marilli ◽  
J.M. Alcalá ◽  
...  

We report the discovery of the first low–mass pre–main sequence eclipsing binary among a sample of double-lined spectroscopic binaries in the Orion star forming region found in a previous high-resolution spectroscopic investigation on ROSAT–discovered weak-T Tauri stars. Here we present the preliminary results from the combined analysis of the spectroscopic orbit and B and V light–curves, using data available till spring 2000. We then compare the fundamental stellar parameters derived from the orbital solution with those inferred from some widely used theoretical evolutionary models.


2001 ◽  
Vol 200 ◽  
pp. 117-121 ◽  
Author(s):  
Ralf Launhardt

The Bok globule CB230 (L1177) contains an active, low-mass star-forming core which is associated with a double NIR reflection nebula, a collimated bipolar molecular outflow, and strong mm continuum emission. The morphology of the NIR nebula suggests the presence of a deeply embedded, wide binary protostellar system. High-angular resolution observations now reveal the presence of two sub-cores, two distinct outflow centers, and an embedded accretion disk associated with the western bipolar NIR nebula. Judging from the separation and specific angular momentum, the CB230 double protostar system probably results from core fragmentation and will end up at the upper end of the pre-main sequence binary separation distribution.


2014 ◽  
Vol 562 ◽  
pp. A50 ◽  
Author(s):  
E. Gillen ◽  
S. Aigrain ◽  
A. McQuillan ◽  
J. Bouvier ◽  
S. Hodgkin ◽  
...  

2008 ◽  
Vol 4 (S258) ◽  
pp. 161-170 ◽  
Author(s):  
Keivan G. Stassun ◽  
Leslie Hebb ◽  
Mercedes López-Morales ◽  
Andrej Prša

AbstractEclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ≈1.2 M⊙; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 M⊙) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10–20% larger than predicted. In mass-radius diagrams these stars thus appear 50–90% older or younger than they really are. Aside from these activity-related effects, low-mass pre–main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.


2011 ◽  
Vol 531 ◽  
pp. A61 ◽  
Author(s):  
L. Hebb ◽  
H. M. Cegla ◽  
K. G. Stassun ◽  
H. C. Stempels ◽  
P. A. Cargile ◽  
...  

2021 ◽  
Vol 911 (2) ◽  
pp. 138
Author(s):  
Larissa A. Nofi ◽  
Christopher M. Johns–Krull ◽  
Ricardo López–Valdivia ◽  
Lauren Biddle ◽  
Adolfo S. Carvalho ◽  
...  

2006 ◽  
Vol 2 (S240) ◽  
pp. 114-116
Author(s):  
Rainer Köhler ◽  
Monika G. Petr-Gotzens ◽  
Mark J. McCaughrean ◽  
Jerome Bouvier ◽  
Gaspard Duchêne ◽  
...  

AbstractWe report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5–15 arcmin (0.65 – 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 – 1.12 arcsec (60 – 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M⊙ is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (< 3′ from θ1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active. A detailed report of this work has been published in Astronomy & Astrophysics (Köhler et al. 2006).


Sign in / Sign up

Export Citation Format

Share Document