scholarly journals Mon-735: a new low-mass pre-main-sequence eclipsing binary in NGC 2264

2020 ◽  
Vol 495 (2) ◽  
pp. 1531-1548
Author(s):  
Edward Gillen ◽  
Lynne A Hillenbrand ◽  
John Stauffer ◽  
Suzanne Aigrain ◽  
Luisa Rebull ◽  
...  

ABSTRACT We present Mon-735, a detached double-lined eclipsing binary (EB) member of the ∼3 Myr old NGC 2264 star-forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system’s spectral energy distribution to determine self-consistent masses, radii, and effective temperatures for both stars. We find that Mon-735 comprises two pre-main-sequence M dwarfs with component masses of M = 0.2918 ± 0.0099 and 0.2661 ± 0.0095 M⊙, radii of R = 0.762 ± 0.022 and 0.748 ± 0.023 R⊙, and effective temperatures of Teff = 3260 ± 73 and 3213 ± 73 K. The two stars travel on circular orbits around their common centre of mass in P = 1.9751388 ± 0.0000050 d. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass–radius diagram (MRD) and, to a lesser extent, in the Hertzsprung–Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are ∼7–9 and 4–6 Myr, respectively, with the two components in each EB system possessing consistent ages.

2020 ◽  
Vol 634 ◽  
pp. A128
Author(s):  
D. Nguyen-Thanh ◽  
N. Phan-Bao ◽  
S. J. Murphy ◽  
M. S. Bessell

Context. Studying the accretion process in very low-mass objects has important implications for understanding their formation mechanism. Many nearby late-M dwarfs that have previously been identified in the field are in fact young brown dwarf members of nearby young associations. Some of them are still accreting. They are therefore excellent targets for further studies of the accretion process in the very low-mass regime at different stages. Aims. We aim to search for accreting young brown dwarf candidates in a sample of 85 nearby late-M dwarfs. Methods. Using photometric data from DENIS, 2MASS, and WISE, we constructed the spectral energy distribution of the late- M dwarfs based on BT-Settl models to detect infrared excesses. We then searched for lithium and Hα emission in candidates that exhibit infrared excesses to confirm their youth and the presence of accretion. Results. Among the 85 late-M dwarfs, only DENIS-P J1538317−103850 (M5.5) shows strong infrared excesses in WISE bands. The detection of lithium absorption in the M5.5 dwarf and its Gaia trigonometric parallax indicate an age of ~1 Myr and a mass of 47 MJ. The Hα emission line in the brown dwarf shows significant variability that indicates sporadic accretion. This 1 Myr-old brown dwarf also exhibits intense accretion bursts with accretion rates of up to 10−7.9 M⊙ yr−1. Conclusions. Our detection of sporadic accretion in one of the youngest brown dwarfs might imply that sporadic accretion at early stages could play an important role in the formation of brown dwarfs. Very low-mass cores would not be able to accrete enough material to become stars, and thus they end up as brown dwarfs.


2019 ◽  
Vol 628 ◽  
pp. A61 ◽  
Author(s):  
N. Lodieu ◽  
F. Allard ◽  
C. Rodrigo ◽  
Y. Pavlenko ◽  
A. Burgasser ◽  
...  

Aims. The aim of the project is to define metallicity/gravity/temperature scales for different spectral types of metal-poor M dwarfs. Methods. We obtained intermediate-resolution ultraviolet (R ∼ 3300), optical (R ∼ 5400), and near-infrared (R ∼ 3900) spectra of 43 M subdwarfs (sdM), extreme subdwarfs (esdM), and ultra-subdwarfs (usdM) with the X-shooter spectrograph on the European Southern Observatory Very Large Telescope. We compared our atlas of spectra to the latest BT-Settl synthetic spectral energy distribution over a wide range of metallicities, gravities, and effective temperatures to infer the physical properties for the whole M dwarf sequence (M0–M9.5) at sub-solar metallicities and constrain the latest atmospheric models. Results. The BT-Settl models accurately reproduce the observed spectra across the 450–2500 nm wavelength range except for a few regions. We find that the best fits are obtained for gravities of log (g) = 5.0–5.5 for the three metal classes. We infer metallicities of [Fe/H] = −0.5, −1.5, and −2.0 ± 0.5 dex and effective temperatures of 3700–2600 K, 3800–2900 K, and 3700–2900 K for subdwarfs, extreme subdwarfs, and ultra-subdwarfs, respectively. Metal-poor M dwarfs tend to be warmer by about 200 ± 100 K and exhibit higher gravity than their solar-metallicity counterparts. We derive abundances of several elements (Fe, Na, K, Ca, Ti) for our sample but cannot describe their atmospheres with a single metallicity parameter. Our metallicity scale expands the current scales available for mildly metal-poor planet-host low-mass stars. Our compendium of moderate-resolution spectra covering the 0.45–2.5 micron range represents an important resource for large-scale surveys and space missions to come.


2020 ◽  
Vol 492 (4) ◽  
pp. 4847-4857
Author(s):  
P W Lucas ◽  
D Minniti ◽  
A Kamble ◽  
D L Kaplan ◽  
N Cross ◽  
...  

ABSTRACT A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 (H − Ks = 5.2). It peaked before March 2010, then faded by ∼9.5 mag over the following 2 yr. The 1.6–22 μm spectral energy distribution in March 2010 was well fit by a highly obscured blackbody with T ∼ 1000 K and $A_{K_s} \sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062−0.294. The chance projection probability is small for any single event (p ≈ 0.01–0.02), which suggests a physical association, e.g. a collision between low mass protostars. However, blackbody emission at T ∼ 1000 K is common in classical novae (especially CO novae) at the infrared peak in the light curve due to condensation of dust ∼30–60 d after the explosion. Radio follow-up with the Australia Telescope Compact Array detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to p = 0.13–0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC.


2020 ◽  
Vol 494 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Jinhee Lee ◽  
Inseok Song ◽  
Simon Murphy

ABSTRACT We report the discovery of the oldest (∼55 Myr) mid-M type star known to host ongoing accretion. 2MASS J15460752–6258042 (2M1546, spectral type M5, 59.2 pc) shows spectroscopic signs of accretion such as strong H α, He i, and [O i] emission lines, from which we estimate an accretion rate of ∼10−10 M⊙ yr−1. Considering the clearly detected infrared excess in all WISE bands, the shape of its spectral energy distribution (SED) and its age, we believe that the star is surrounded by a transitional disc, clearly with some gas still present at inner radii. The position and kinematics of the star from Gaia DR2 and our own radial-velocity measurements suggest membership in the nearby ∼55 Myr-old Argus moving group. At only 59 pc from Earth, 2M1546 is one of the nearest accreting mid-M dwarfs, making it an ideal target for studying the upper limit on the lifetimes of gas-rich discs around low-mass stars.


2020 ◽  
Vol 499 (3) ◽  
pp. 4325-4369
Author(s):  
Andrés F Ramos Padilla ◽  
M L N Ashby ◽  
Howard A Smith ◽  
Juan R Martínez-Galarza ◽  
Aliza G Beverage ◽  
...  

ABSTRACT Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a spectral energy distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $10^{10} \,\rm {M}_{*}$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN–[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages.


2018 ◽  
Vol 615 ◽  
pp. A146 ◽  
Author(s):  
W. J. Pearson ◽  
L. Wang ◽  
P. D. Hurley ◽  
K. Małek ◽  
V. Buat ◽  
...  

Context. Deep far-infrared (FIR) cosmological surveys are known to be affected by source confusion, causing issues when examining the main sequence (MS) of star forming galaxies. In the past this has typically been partially tackled by the use of stacking. However, stacking only provides the average properties of the objects in the stack. Aims. This work aims to trace the MS over 0.2 ≤ z < 6.0 using the latest de-blended Herschel photometry, which reaches ≈10 times deeper than the 5σ confusion limit in SPIRE. This provides more reliable star formation rates (SFRs), especially for the fainter galaxies, and hence a more reliable MS. Methods. We built a pipeline that uses the spectral energy distribution (SED) modelling and fitting tool CIGALE to generate flux density priors in the Herschel SPIRE bands. These priors were then fed into the de-blending tool XID+ to extract flux densities from the SPIRE maps. In the final step, multi-wavelength data were combined with the extracted SPIRE flux densities to constrain SEDs and provide stellar mass (M⋆) and SFRs. These M⋆ and SFRs were then used to populate the SFR-M⋆ plane over 0.2 ≤ z < 6.0. Results. No significant evidence of a high-mass turn-over was found; the best fit is thus a simple two-parameter power law of the form log(SFR) = α[log(M⋆) − 10.5] + β. The normalisation of the power law increases with redshift, rapidly at z ≲ 1.8, from 0.58 ± 0.09 at z ≈ 0.37 to 1.31 ± 0.08 at z ≈ 1.8. The slope is also found to increase with redshift, perhaps with an excess around 1.8 ≤ z < 2.9. Conclusions. The increasing slope indicates that galaxies become more self-similar as redshift increases. This implies that the specific SFR of high-mass galaxies increases with redshift, from 0.2 to 6.0, becoming closer to that of low-mass galaxies. The excess in the slope at 1.8 ≤ z < 2.9, if present, coincides with the peak of the cosmic star formation history.


2008 ◽  
Vol 674 (1) ◽  
pp. 329-335 ◽  
Author(s):  
P. A. Cargile ◽  
K. G. Stassun ◽  
R. D. Mathieu

2018 ◽  
Vol 618 ◽  
pp. A1 ◽  
Author(s):  
L. Wang ◽  
P. Norberg ◽  
S. Brough ◽  
M. J. I. Brown ◽  
E. da Cunha ◽  
...  

Aims: We aim to investigate if the environment (characterised by the host dark matter halo mass) plays any role in shaping the galaxy star formation main sequence (MS). Methods: The Galaxy and Mass Assembly project (GAMA) combines a spectroscopic survey with photometric information in 21 bands from the far-ultraviolet (FUV) to the far-infrared (FIR). Stellar masses and dust-corrected star-formation rates (SFR) are derived from spectral energy distribution (SED) modelling using MAGPHYS. We use the GAMA galaxy group catalogue to examine the variation of the fraction of star-forming galaxies (SFG) and properties of the MS with respect to the environment. Results: We examine the environmental dependence for stellar mass selected samples without preselecting star-forming galaxies and study any dependence on the host halo mass separately for centrals and satellites out to z ∼ 0.3. We find the SFR distribution at fixed stellar mass can be described by the combination of two Gaussians (referred to as the star-forming Gaussian and the quiescent Gaussian). Using the observed bimodality to define SFG, we investigate how the fraction of SFG F(SFG) and properties of the MS change with environment. For centrals, the position of the MS is similar to the field but with a larger scatter. No significant dependence on halo mass is observed. For satellites, the position of the MS is almost always lower (by ∼0.2 dex) compared to the field and the width is almost always larger. F(SFG) is similar between centrals (in different halo mass bins) and field galaxies. However, for satellites F(SFG) decreases with increasing halo mass and this dependence is stronger towards lower redshift.


2019 ◽  
Vol 15 (S341) ◽  
pp. 74-77
Author(s):  
Annagrazia Puglisi

AbstractStellar masses are crucial ingredients for putting galaxies in the context of galaxy evolution and are commonly evaluated via Spectral Energy Distribution (SED)-fitting analyses which are hampered by dust attenuation. Observational constraints of attenuation in various galaxy classes provide key inputs for fitting a SED. I will present recent results about the attenuation properties of a sample of Herschel-selected galaxies at 0.7 ⩽ z ⩽ 1.6 widely spanning the star-forming Main Sequence (MS). I will show that far-IR selected galaxies on the MS are well described with local attenuation recipes. Conversely, common recipes cannot recover the SFR of far-IR selected starburst galaxies well above the MS. The SFR of these outliers appears to be hidden by the ∼90% in optically thick cores. These findings pose challenges for SED-fitting codes based on energy balance assumptions that might break in these peculiar sources.


Author(s):  
Gareth D Smith ◽  
Edward Gillen ◽  
Didier Queloz ◽  
Lynne A Hillenbrand ◽  
Jack S Acton ◽  
...  

Abstract We present the discovery and characterisation of an eclipsing binary identified by the Next Generation Transit Survey in the ∼115 Myr old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterised, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterised, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the system’s spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in Porb = 1.09800524 ± 0.00000038 days, and have masses Mpri = 0.3978 ± 0.0033 M⊙ and Msec = 0.2245 ± 0.0018 M⊙, radii Rpri = 0.4037 ± 0.0048 R⊙ and Rsec = 0.2759 ± 0.0055 R⊙, and effective temperatures $T_{\rm pri}=\mbox{$3372\, ^{+44}_{-37}$}$ K and $T_{\rm sec}=\mbox{$3231\, ^{+38}_{-31}$}$ K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterised, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages.


Sign in / Sign up

Export Citation Format

Share Document