ABUNDANCE ANOMALY OF THE13C ISOTOPIC SPECIES OF c-C3H2IN THE LOW-MASS STAR FORMATION REGION L1527

2015 ◽  
Vol 807 (1) ◽  
pp. 66 ◽  
Author(s):  
Kento Yoshida ◽  
Nami Sakai ◽  
Tomoya Tokudome ◽  
Ana López-Sepulcre ◽  
Yoshimasa Watanabe ◽  
...  
1989 ◽  
Vol 120 ◽  
pp. 133-133
Author(s):  
G.A.P. Franco

The Chamaeleon dark clouds form a large complex of interstellar obscuring material situated at ≈ 15° below the galactic plane. Although it is accepted as being one of the closest low-mass star formation region to the Sun, its distance has been debated issues. The proposed distance is in general dependent on the value assumed for the ratio of total-to-selective extinction, which in the Chamaeleon clouds has proved controversial, leading to distances estimates ranging from 115 to 215 pc.


2020 ◽  
Vol 643 ◽  
pp. A178
Author(s):  
Kadirya Tursun ◽  
Jarken Esimbek ◽  
Christian Henkel ◽  
Xindi Tang ◽  
Gang Wu ◽  
...  

We surveyed the Aquila Rift complex including the Serpens South and W 40 regions in the NH3 (1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. Our observations cover an area of ~ 1.5° × 2.2° (11.4 pc × 16.7 pc). The kinetic temperatures of the dense gas in the Aquila Rift complex obtained from NH3 (2,2)/(1,1) ratios range from 8.9 to 35.0 K with an average of 15.3 ± 6.1 K (errors are standard deviations of the mean). Low gas temperatures are associated with Serpens South ranging from 8.9 to 16.8 K with an average of 12.3 ± 1.7 K, while dense gas in the W 40 region shows higher temperatures ranging from 17.7 to 35.0 K with an average of 25.1 ± 4.9 K. A comparison of kinetic temperatures derived from para-NH3 (2,2)/(1,1) against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low-mass-star formation region of Serpens South. In the high-mass-star formation region W 40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH3 (1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 (para+ortho) abundance obtained by a comparison with Herschel infrared continuum data representing dust emission, we find values from 0.1 ×10−8 to 2.1 ×10−7 with an average of 6.9 (±4.5) × 10−8. Serpens South also shows a fractional total-NH3 (para+ortho) abundance ranging from 0.2 ×10−8 to 2.1 ×10−7 with an average of 8.6 (±3.8) × 10−8. In W 40, values are lower, between 0.1 and 4.3 ×10−8 with an average of 1.6 (±1.4) × 10−8. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W 40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes. However, the presence of a physical connection between the two parts remains questionable.


2016 ◽  
Vol 825 (1) ◽  
pp. 54 ◽  
Author(s):  
C. L. Barbosa ◽  
R. D. Blum ◽  
A. Damineli ◽  
P. S. Conti ◽  
D. M. Gusmão

2016 ◽  
Vol 465 (1) ◽  
pp. 1095-1105 ◽  
Author(s):  
V. Krishnan ◽  
S. P. Ellingsen ◽  
M. J. Reid ◽  
H. E. Bignall ◽  
J. McCallum ◽  
...  

2007 ◽  
Vol 477 (3) ◽  
pp. L45-L48 ◽  
Author(s):  
F. Fontani ◽  
P. Caselli ◽  
T. L. Bourke ◽  
R. Cesaroni ◽  
J. Brand

2017 ◽  
Vol 13 (S336) ◽  
pp. 334-335
Author(s):  
V. Krishnan ◽  
L. Moscadelli ◽  
S. P. Ellingsen ◽  
H. E. Bignall ◽  
S. L. Breen ◽  
...  

AbstractWe present multi–epoch VLBI observations of the methanol and water masers in the high–mass star formation region G 339.884−1.259, made using the Australian Long Baseline Array (LBA). Our sub–milliarcsecond precision measurements trace the proper motions of individual maser features in the plane of the sky. When combined with the direct line–of–sight radial velocity (vlsr), these measure the 3 D gas kinematics of the associated high–mass star formation region, allowing us to probe the dynamical processes to within 1000 AU of the core.


2017 ◽  
Vol 13 (S336) ◽  
pp. 291-292
Author(s):  
Gang Wu ◽  
Keping Qiu ◽  
Jarken Esimbek ◽  
Xingwu Zheng

AbstractWe have observed a young stellar object, IRAS 18360-0537, with a far-infrared luminosity of 1.2 × 105 L⊙. It is perhaps the most promising candidate of a high-mass protostar associated with a Keplerian disk and a jet/outflow system in the regime of L > 105L⊙. We are conducting the SMA, VLA, and VLBA studies to provide a comprehensive understanding of this interesting high mass star formation scenario.


1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

2013 ◽  
Vol 557 ◽  
pp. A35 ◽  
Author(s):  
Eduard I. Vorobyov ◽  
Isabelle Baraffe ◽  
Tim Harries ◽  
Gilles Chabrier

Sign in / Sign up

Export Citation Format

Share Document