Reflection of an impulsive plane wave by an anisotropic plasma half-space

1974 ◽  
Vol 7 (12) ◽  
pp. L137-L141 ◽  
Author(s):  
B V Stanic ◽  
M M Skoric
Geophysics ◽  
1967 ◽  
Vol 32 (4) ◽  
pp. 668-677 ◽  
Author(s):  
Douglas P. O’Brien ◽  
H. F. Morrison

From Maxwell’s equations and Ohm’s law for a horizontally anisotropic medium, it may be shown that two independent plane wave modes propagate perpendicular to the plane of the anisotropy. Boundary conditions at the interfaces in an n‐layered model permit the calculation, through successive matrix multiplications, of the fields at the surface in terms of the fields propagated into the basal infinite half space. Specifying the magnetic field at the surface allows the calculation of the resultant electric fields, and the calculation of the entries of a tensor impedance relationship. These calculations have been programmed for the digital computer and an interpretation of impedances obtained from field measurements may thus be made in terms of the anisotropic layering. In addition, apparent resistivities in orthogonal directions have been calculated for specific models and compared to experimental data. It is apparent that the large scatter of observed resistivities can be caused by small changes in the polarization of the magnetic field.


1988 ◽  
Vol 55 (2) ◽  
pp. 398-404 ◽  
Author(s):  
John G. Harris

The wavefield radiated into an elastic half-space by an ultrasonic transducer, as well as the radiation admittance of the transducer coupled to the half-space, are studied. Two models for the transducer are used. In one an axisymmetric, Gaussian distribution of normal traction is imposed upon the surface, while in the other a uniform distribution of normal traction is imposed upon a circular region of the surface, leaving the remainder free of traction. To calculate the wavefield, each wave emitted by the transducer is expressed as a plane wave multiplied by an asymptotic power series in inverse powers of the aperture’s (scaled) radius. This reduces the wave equations satisfied by the compressional and shear potentials to their parabolic approximations. The approximations to the radiated waves are accurate at a depth where the wavefield remains well collimated.


1991 ◽  
Vol 90 (5) ◽  
pp. 2751-2756 ◽  
Author(s):  
Dajun Tang ◽  
George V. Frisk

Sign in / Sign up

Export Citation Format

Share Document