ultrasonic transducer
Recently Published Documents


TOTAL DOCUMENTS

1885
(FIVE YEARS 408)

H-INDEX

38
(FIVE YEARS 10)

2022 ◽  
Vol 12 (2) ◽  
pp. 849
Author(s):  
Rymantas Jonas Kazys ◽  
Justina Sestoke ◽  
Egidijus Zukauskas

Ultrasonic-guided waves are widely used for the non-destructive testing and material characterization of plates and thin films. In the case of thin plastic polyvinyl chloride (PVC), films up to 3.2 MHz with only two Lamb wave modes, antisymmetrical A0 and symmetrical S0, may propagate. At frequencies lower that 240 kHz, the velocity of the A0 mode becomes slower than the ultrasonic velocity in air which makes excitation and reception of such mode complicated. For excitation of both modes, we propose instead a single air-coupled ultrasonic transducer to use linear air-coupled arrays, which can be electronically readjusted to optimally excite and receive the A0 and S0 guided wave modes. The objective of this article was the numerical investigation of feasibility to excite different types of ultrasonic-guided waves, such as S0 and A0 modes in thin plastic films with the same electronically readjusted linear phased array. Three-dimensional and two-dimensional simulations of A0 and S0 Lamb wave modes using a single ultrasonic transducer and a linear phased array were performed. The obtained results clearly demonstrate feasibility to excite efficiently different guided wave modes in thin plastic films with readjusted phased array.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 624
Author(s):  
Jinhyuk Kim ◽  
Jungwoo Lee

We recently proposed an analytical design method of Langevin transducers for therapeutic ultrasound treatment by conducting parametric study to estimate the effect of compression force on resonance characteristics. In this study, experimental investigations were further performed under various electrical conditions to observe the acoustic power of the fully equipped transducer and to assess its heat-related bioeffect. Thermal index (TI) tests were carried out to examine temperature rise and thermal damage induced by the acoustic energy in fatty porcine tissue. Acoustic power emission, TI values, temperature characteristics, and depth/size of thermal ablation were measured as a function of transducer’s driving voltage. By exciting the transducer with 300 Vpp sinusoidal continuous waveform, for instance, the average power was 23.1 W and its corresponding TI was 4.1, less than the 6 specified by the Food and Drug Administration (FDA) guideline. The maximum temperature and the depth of the affected site were 74.5 °C and 19 mm, respectively. It is shown that thermal ablation is likely to be more affected by steep heat surge for a short duration rather than by slow temperature rise over time. Hence, the results demonstrate the capability of our ultrasonic transducer intended for therapeutic procedures by safely interrogating soft tissue and yet delivering enough energy to thermally stimulate the tissue in depth.


2022 ◽  
Author(s):  
Aisling Field ◽  
Brijesh Tiwari ◽  
James F Curtin ◽  
Julie Rose Mae Mondala ◽  
Janith Wanigasekara

Ultrasound is a sound wave with frequencies ranging between 20 kHz and 20 MHz. Ultrasound is able to temporarily and repeatedly open the BBB safely and enhance chemotherapeutic delivery without adverse effects.(Deprez et al., 2021). This novel technique in drug delivery benefits from the powerful ability of ultrasound to produce cavitation activity. Cavitation is the generation and activity of gas-filled bubbles in a medium exposed to ultrasound. As the pressure wave passes through the media, gas bubbles expand at low pressure and contract at high pressure. This leads to oscillation which produces a circulating fluid flow known as microstreaming around the bubble with velocities and shear rates proportional to the amplitude of the oscillation. At high amplitudes the associated shear forces can cut open liposomes (Wanigasekara et al., 2021; Deprez et al., 2021). Vesicles denser than the surrounding liquid are drawn into the shear field surrounding an oscillating bubble. If the shear stress is greater than the strength of the vesicle, it will burst and spill its contents. In a liposome, the vesicle will reform, often at a smaller size than before meeting the shear field. Hence, some interior liquid must be released during the break down. (Pitt et al., 2004) This protocol describes the use of an ultrasound probe to trigger the release of liposomes in glioblastoma cells. This method uses an ultrasound device which is set to the following parameters: Time = 3 min, Pulse = 59 /01, Amplitude = 20%. The ultrasound technique is an easy and reliable technique making it useful in the study of a variety of areas such as oncology. When applied to an ultrasonic transducer, the Pulser part of the instrument generates short, large amplitude electric pulses of controlled energy, which are transformed into short ultrasonic pulses. The VCX 750 is the ultrasonic liquid processor used for this experiment. It is powerful and versatile and can process a wide range of sample types and volumes for many different applications.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 140
Author(s):  
María Guadalupe González-Solórzano ◽  
Rodolfo Davila Morales ◽  
Javier Guarneros ◽  
Carlos Rodrigo Muñiz-Valdés ◽  
Alfonso Nájera Bastida

The characterization of the turbulent flow of liquid steel in a slab mold using a commercial nozzle was carried out through physical experiments and mathematical models. Six ultrasonic sensors were located at each side of the nozzle to obtain real-time plotting of the bath levels during the experimental time. An ultrasonic transducer located in the mold, 20 mm below the meniscus, determines the velocities and the turbulent variables along with the distance from the narrow face to the position of the nozzle’s outer wall. These data, together with the mathematical simulations, demonstrated a high correlation of bath level oscillations and the time-dependent behavior of the discharging jets. The flow inside the mold shows low-frequency non-symmetric patterns without a severe turbulent in the meniscus. The source of this instability is the partial opening of the slide valve gate used to control the mass flow of liquid.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Ziyuan Wang ◽  
Changde He ◽  
Wendong Zhang ◽  
Yifan Li ◽  
Pengfei Gao ◽  
...  

Capacitive micromachined ultrasound transducers (CMUTs) have broad application prospects in medical imaging, flow monitoring, and nondestructive testing. CMUT arrays are limited by their fabrication process, which seriously restricts their further development and application. In this paper, a vacuum-sealed device for medical applications is introduced, which has the advantages of simple manufacturing process, no static friction, repeatability, and high reliability. The CMUT array suitable for medical imaging frequency band was fabricated by a silicon wafer bonding technology, and the adjacent array devices were isolated by an isolation slot, which was cut through the silicon film. The CMUT device fabricated following this process is a 4 × 16 array with a single element size of 1 mm × 1 mm. Device performance tests were conducted, where the center frequency of the transducer was 3.8 MHz, and the 6 dB fractional bandwidth was 110%. The static capacitance (29.4 pF) and center frequency (3.78 MHz) of each element of the array were tested, and the results revealed that the array has good consistency. Moreover, the transmitting and receiving performance of the transducer was evaluated by acoustic tests, and the receiving sensitivity was −211 dB @ 3 MHz, −213 dB @ 4 MHz. Finally, reflection imaging was performed using the array, which provides certain technical support for the research of two-dimensional CMUT arrays in the field of 3D ultrasound imaging.


Ultrasonics ◽  
2022 ◽  
pp. 106683
Author(s):  
Guo Li ◽  
Junsuo Qu ◽  
Long Xu ◽  
Xiaoli Zhang ◽  
Xiangyu Gao

2022 ◽  
pp. 115249
Author(s):  
Pengfei Lin ◽  
Yuanbo Zhu ◽  
Zhaobao Chen ◽  
Chunlong Fei ◽  
Dongdong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document