Approximate analytical solution of the coupled sine-Gordon equation using the variational iteration method

2007 ◽  
Vol 76 (5) ◽  
pp. 445-448 ◽  
Author(s):  
B Batiha ◽  
M S M Noorani ◽  
I Hashim
Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Belal Batiha

In this article, the Daftardar-Gejji and Jafari method (DJM) is used to obtain an approximate analytical solution of the sine-Gordon equation. Some examples are solved to demonstrate the accuracy of DJM. A comparison study between DJM, the variational iteration method (VIM), and the exact solution are presented. The comparison of the present symmetrical results with the existing literature is satisfactory.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4449-4455
Author(s):  
Shu-Xian Deng ◽  
Xin-Xin Ge

The main objective of the present article is to introduce a new analytical solution of the local fractional Landau-Ginzburg-Higgs equation on fractal media by means of the local fractional variational iteration transform method, which is coupling of the variational iteration method and Yang-Laplace transform method.


Author(s):  
Muhammad Nadeem ◽  
Hijaz Ahmad

In this paper, a well-known equation used in astrophysics and mathematical physics called the Lane-Emden equation is to be solved by a variational iteration method. The main purpose of this approach is to solve the singular initial value problems and also boundary value problem of Lane-Emden type equations. This technique overcomes its singularity at origin rapidly. It gives the approximate and exact solution with easily computable terms. The approach is illustrated with some examples to show its reliability and compactness.


2021 ◽  
pp. 100-100
Author(s):  
Xue-Si Ma ◽  
Li-Na Zhang

He?s fractal calculus is a powerful and effective tool to dealing with natural phenomena in a fractal space. In this paper, we study the fractal KdV equation with He?s fractal derivative. We first adopt the two-scale transform method to convert the fractal KdV equation into its traditional partner in acontinuous space. Finally, we successfully use He?s variational iteration method (HVIM) to obtain its approximate analytical solution.


Sign in / Sign up

Export Citation Format

Share Document