scholarly journals IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS

2009 ◽  
Vol 184 (2) ◽  
pp. 264-270 ◽  
Author(s):  
Franz Elsner ◽  
Benjamin D. Wandelt
1996 ◽  
Vol 05 (04) ◽  
pp. 319-362 ◽  
Author(s):  
D.I. NOVIKOV ◽  
H.E. JØRGENSEN

In this paper we develop the theory of clusterization of peaks in a Gaussian random field. We have obtained new mathematical results from this theory and the theory of percolation and have proposed a topological method of analysis of sky maps based on these results. We have simulated 10°×10° sky maps of the cosmic microwave background anisotropy expected from different cosmological models with 0.5°–1° resolution in order to demonstrate how this method can be used for detection of non-Gaussian noise in the maps and detection of the Doppler-peak in the spectrum of perturbation of ΔT/T.


2019 ◽  
Vol 626 ◽  
pp. A13 ◽  
Author(s):  
F. K. Hansen ◽  
T. Trombetti ◽  
N. Bartolo ◽  
U. Natale ◽  
M. Liguori ◽  
...  

Context. Based on recent observations of the cosmic microwave background (CMB), claims of statistical anomalies in the properties of the CMB fluctuations have been made. Although the statistical significance of the anomalies remains only at the ∼2−3σ significance level, the fact that there are many different anomalies, several of which support a possible deviation from statistical isotropy, has motivated a search for models that provide a common mechanism to generate them. Aims. The goal of this paper is to investigate whether these anomalies could originate from non-Gaussian cosmological models, and to determine what properties these models should have. Methods. We present a simple isotropic, non-Gaussian class of toy models that can reproduce six of the most extensively studied anomalies. We compare the presence of anomalies found in simulated maps generated from the toy models and from a standard model with Gaussian fluctuations. Results. We show that the following anomalies, as found in the Planck data, commonly occur in the toy model maps: (1) large-scale hemispherical asymmetry (large-scale dipolar modulation), (2) small-scale hemispherical asymmetry (alignment of the spatial distribution of CMB power over all scales ℓ = [2, 1500]), (3) a strongly non-Gaussian hot or cold spot, (4) a low power spectrum amplitude for ℓ <  30, including specifically (5) a low quadrupole and an unusual alignment between the quadrupole and the octopole, and (6) parity asymmetry of the lowest multipoles. We note that this class of toy model resembles models of primordial non-Gaussianity characterised by strongly scale-dependent gNL-like trispectra.


2002 ◽  
Vol 17 (29) ◽  
pp. 4273-4280
Author(s):  
ALEJANDRO GANGUI

In the framework of inflationary models with non-vacuum initial states for cosmological perturbations, we study non-Gaussian signatures on the cosmic microwave background (CMB) radiation produced by a broken-scale-invariant model which incorporates a feature at a privileged scale in the primordial power spectrum.


1999 ◽  
Vol 524 (2) ◽  
pp. L79-L82 ◽  
Author(s):  
Benjamin C. Bromley ◽  
Max Tegmark

2010 ◽  
Vol 2010 ◽  
pp. 1-64 ◽  
Author(s):  
Michele Liguori ◽  
Emiliano Sefusatti ◽  
James R. Fergusson ◽  
E. P. S. Shellard

The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.


2014 ◽  
Vol 11 (S308) ◽  
pp. 61-66 ◽  
Author(s):  
Dmitri Pogosyan ◽  
Sandrine Codis ◽  
Christophe Pichon

AbstractIn the conference presentation we have reviewed the theory of non-Gaussian geometrical measures for 3D Cosmic Web of the matter distribution in the Universe and 2D sky data, such as Cosmic Microwave Background (CMB) maps that was developed in a series of our papers. The theory leverages symmetry of isotropic statistics such as Minkowski functionals and extrema counts to develop post Gaussian expansion of the statistics in orthogonal polynomials of invariant descriptors of the field, its first and second derivatives. The application of the approach to 2D fields defined on a spherical sky was suggested, but never rigorously developed. In this paper we present such development treating the effects of the curvature and finiteness of the spherical space $S_2$ exactly, without relying on flat-sky approximation. We present Minkowski functionals, including Euler characteristic and extrema counts to the first non-Gaussian correction, suitable for weakly non-Gaussian fields on a sphere, of which CMB is the prime example.


Sign in / Sign up

Export Citation Format

Share Document