cosmic microwave background temperature
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
pp. 038
Author(s):  
Dhiraj Kumar Hazra ◽  
Daniela Paoletti ◽  
Ivan Debono ◽  
Arman Shafieloo ◽  
George F. Smoot ◽  
...  

Abstract We present constraints on inflationary dynamics and features in the primordial power spectrum of scalar perturbations using the Cosmic Microwave Background temperature, polarization data from Planck 2018 data release and updated likelihoods. We constrain the slow-roll dynamics using Hilltop Quartic Potential and Starobinsky R + R 2 model in the Einstein frame using the Planck 2018 binned Plik likelihood. Using the Hilltop as base potential, we construct Whipped Inflation potential to introduce suppression in the scalar power spectrum at large angular scales. We notice marginal (68% C.L.) preference of suppression from the large scale temperature angular power spectrum. However, large-scale E-mode likelihood based on high frequency instrument cross spectrum, does not support this suppression and in the combined data the preference towards the suppression becomes negligible. Based on the Hilltop and Starobinsky model, we construct the Wiggly Whipped Inflation potentials to introduce oscillatory features along with the suppression. We use unbinned data from the recently released CamSpec v12.5 likelihood which updates Planck 2018 results. We compare the Bayesian evidences of the feature models with their baseline slow-roll potentials. We find that the complete slow-roll baseline potential is moderately preferred against potentials which generate features. Compared to Planck 2015 PlikHM bin1 likelihood, we find that the significance of sharp features has decreased owing to the updates in the data analysis pipeline. We also compute the bispectra for the best fit candidates obtained from our analysis.


2021 ◽  
Vol 922 (2) ◽  
pp. 136
Author(s):  
Yunyang Li ◽  
Adam D. Hincks ◽  
Stefania Amodeo ◽  
Elia S. Battistelli ◽  
J. Richard Bond ◽  
...  

Abstract The Sunyaev–Zel’dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range 0.07 ≲ z ≲ 1.4 from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model α = 0.017 − 0.032 + 0.029 , where T ( z ) = T 0 1 + z 1 − α . This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent data sets we obtain a joint constraint of α = −0.001 ± 0.012. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state w eff = − 0.998 − 0.010 + 0.008 .


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1648 ◽  
Author(s):  
Carlos Pérez de los Heros

Indirect searches for dark matter are based on detecting an anomalous flux of photons, neutrinos or cosmic-rays produced in annihilations or decays of dark matter candidates gravitationally accumulated in heavy cosmological objects, like galaxies, the Sun or the Earth. Additionally, evidence for dark matter that can also be understood as indirect can be obtained from early universe probes, like fluctuations of the cosmic microwave background temperature, the primordial abundance of light elements or the Hydrogen 21-cm line. The techniques needed to detect these different signatures require very different types of detectors: Air shower arrays, gamma- and X-ray telescopes, neutrino telescopes, radio telescopes or particle detectors in balloons or satellites. While many of these detectors were not originally intended to search for dark matter, they have proven to be unique complementary tools for direct search efforts. In this review we summarize the current status of indirect searches for dark matter, mentioning also the challenges and limitations that these techniques encounter.


2020 ◽  
Vol 498 (3) ◽  
pp. 4481-4491
Author(s):  
Rajendra P Gupta

ABSTRACT We have shown that the varying physical constant model is consistent with the recently published variational approach wherein Einstein equations are modified to include the variation of the speed of light c, gravitational constant G, and cosmological constant Λ using the Einstein–Hilbert action. The general constraint resulting from satisfying the local conservation laws and contracted Bianchi identities provides the freedom to choose the form of the variation of the constants as well as how their variations are related. When we choose ${\dot{G}}/G = 3\,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{\dot{c}} /c,\,c = {c_0}\,{\rm{exp}}\,[({a^\alpha} - 1)],\,G = {G_0}\,{\rm{exp}}\,[3({a^\alpha} - 1)]$, and ${\rm{\Lambda }} = {{\rm{\Lambda }}_0}\ \exp [ {( {{a^{ - \alpha }} - 1} )} ]$, where a is the scale factor and α = 1.8, we are able to show that the resulting model: (a) fits the supernova 1a observational data marginally better than the Lambda cold dark matter (ΛCDM) model; (b) determines the first peak in the power spectrum of the cosmic microwave background temperature anisotropies at a multipole value of $l = 217.3$; (c) calculates the age of the Universe as 14.1 Gyr; and (d) finds the BAO acoustic scale to be 145.2 Mpc. These numbers are within less than 3 per cent of the values derived using the ΛCDM model. Surprisingly, we find that the dark-energy density is negative in a Universe that has significant negative curvature and whose expansion is accelerating at a faster rate than that predicted by the ΛCDM model.


Author(s):  
Rajendra Gupta

We have shown that our varying physical constant model is consistent with the recently published variational approach wherein Einstein equations are modified to include the variation of the speed of light c, gravitational constant G and cosmological constant Λ using the Einstein-Hilbert action. The general constraint resulting from satisfying the local conservation laws and contracted Bianchi identities provides the freedom to choose the form of the variation of the constants as well as how their variations are related. When we choose dG/Gdt=3dc/cdt, ̇the same as in our quasi-phenomenological model, c=c0 exp⁡(aα-1), G=G0 exp⁡[3(aα-1)] and Λ=Λ0 exp⁡[(a-α-1)], where a is the scale factor and α=1.8, we are able to confirm the success of our the model in explaining three astrometric anomalies and the null results on the variation of G and the fine structure constant. We show that the model: (a) fits the supernovae 1a observational data better than the ΛCDM model; (b) determines the first peak in the power spectrum of the cosmic microwave background temperature anisotropies at multipole value of l=217.3; (c) calculates the age of the universe as 14.1 Gyr; and (d) finds the BAO acoustic scale to be 145.2 Mpc. These numbers are within less than 3% percent of the observed values and the values obtained by the ΛCDM model. Surprisingly we find that the dark-energy density is negative in a universe that has significant negative curvature and whose expansion is accelerating at a faster rate than predicted by the ΛCDM model.


2020 ◽  
Vol 493 (4) ◽  
pp. 4830-4844
Author(s):  
Behzad Ansarinejad ◽  
Ruari Mackenzie ◽  
Tom Shanks ◽  
Nigel Metcalfe

ABSTRACT The integrated Sachs–Wolfe (ISW) effect probes the late-time expansion history of the Universe, offering direct constraints on dark energy. Here, we present our measurements of the ISW signal at redshifts of $\bar{z}=0.35$, 0.55, and 0.68, using the cross-correlation of the Planck cosmic microwave background temperature map with ∼0.5 million luminous red galaxies (LRGs) selected from the VST ATLAS survey. We then combine these with previous measurements based on WMAP and similar SDSS LRG samples, providing a total sample of ∼2.1 million LRGs covering ∼12 000 deg2 of sky. At $\bar{z}=0.35$ and $\bar{z}=0.55$, we detect the ISW signal at 1.2σ and 2.3σ (or 2.6σ combined), in agreement with the predictions of lambda cold dark matter (ΛCDM). We verify these results by repeating the measurements using the BOSS LOWZ and CMASS, spectroscopically confirmed LRG samples. We also detect the ISW effect in three magnitude limited ATLAS + SDSS galaxy samples extending to z ≈ 0.4 at ∼2σ per sample. However, we do not detect the ISW signal at $\bar{z}=0.68$ when combining the ATLAS and SDSS results. Further tests using spectroscopically confirmed eBOSS LRGs at this redshift remain inconclusive due to the current low sky coverage of the survey. If the ISW signal is shown to be redshift dependent in a manner inconsistent with the predictions of ΛCDM, it could open the door to alternative theories such as modified gravity. It is therefore important to repeat the high-redshift ISW measurement using the completed eBOSS sample, as well as deeper upcoming surveys such as DESI and LSST.


2019 ◽  
Vol 490 (4) ◽  
pp. 5174-5181
Author(s):  
Craig J Copi ◽  
James Gurian ◽  
Arthur Kosowsky ◽  
Glenn D Starkman ◽  
Hezi Zhang

ABSTRACT The absence of large-angle correlations in the map of cosmic microwave background temperature fluctuations is among the well-established anomalies identified in full-sky and cut-sky maps over the past three decades. Suppressed large-angle correlations are rare statistical flukes in standard inflationary cosmological models. One natural explanation could be that the underlying primordial density perturbations lack correlations on large distance scales. To test this idea, we replace Fourier modes by a wavelet basis with compact spatial support. While the angular correlation function of perturbations can readily be suppressed, the observed monopole- and dipole-subtracted correlation function is not generally suppressed. This suggests that suppression of large-angle temperature correlations requires a mechanism that has both real-space and harmonic-space effects.


Sign in / Sign up

Export Citation Format

Share Document