The role of the velocity gradient in laminar convective heat transfer through a tube with a uniform wall heat flux

2009 ◽  
Vol 30 (4) ◽  
pp. 823-833 ◽  
Author(s):  
Liang-Bi Wang ◽  
Qiang Zhang ◽  
Xiao-Xia Li
Author(s):  
Smith Eiamsa-ard ◽  
Vichan Kongkaitpaiboon ◽  
Khwanchit Wongcharee

This paper reports the experimental investigation of local convective heat transfer enhancement, flow friction and thermal performance factor behaviors in the tube fitted with the short helical tapes (SHTs) acting as decaying swirl flow generators. The tapes with three different helical tape angles (? = 90°, 135° and 180°) and three different channel numbers (N = 2, 3 and 4 channels) were tested under the uniform wall heat flux condition. The performance of each tape is compared with the performance of the plain tube subject to the same pumping power. The experimental results show that the heat transfer rates and friction factors of the tube with SHTs are respectively in range of 1.15 to 1.9 and 1.49 to 2.31 times of those in the plain, corresponding to thermal performances between 0.98 and 1.46. The correlations for Nusselt number (Nu) as a function of Reynolds number (Re), Prandtl number (Pr), helical tape angle (?) and the number of channel (N) are also developed.


1994 ◽  
Vol 76 (5) ◽  
pp. 2084-2094 ◽  
Author(s):  
M. B. Ducharme ◽  
P. Tikuisis

The objective of the present study was to investigate the relative contribution of the convective heat transfer in the forearm and hand to 1) the total heat loss during partial immersion in cold water [water temperature (Tw) = 20 degrees C] and 2) the heat gained during partial immersion in warm water (Tw = 38 degrees C). The heat fluxes from the skin of the forearm and finger were continuously monitored during the 3.5-h immersion of the upper limb (forearm and hand) with 23 recalibrated heat flux transducers. The last 30 min of the partial immersion were conducted with an arterial occlusion of the forearm. The heat flux values decreased during the occlusion period at Tw = 20 degrees C and increased at Tw = 38 degrees C for all sites, plateauing only for the finger to the value of the tissue metabolic rate (124.8 +/- 29.0 W/m3 at Tw = 20 degrees C and 287.7 +/- 41.8 W/m3 at Tw = 38 degrees C). The present study shows that, at thermal steady state during partial immersion in water at 20 degrees C, the convective heat transfer between the blood and the forearm tissue is the major heat source of the tissue and accounts for 85% of the total heat loss to the environment. For the finger, however, the heat produced by the tissue metabolism and that liberated by the convective heat transfer are equivalent. At thermal steady state during partial immersion in water at 38 degrees C, the blood has the role of a heat sink, carrying away from the limb the heat gained from the environment and, to a lesser extent (25%), the metabolic and conductive heats. These results suggest that during local cold stress the convective heat transfer by the blood has a greater role than that suggested by previous studies for the forearm but a lesser role for the hand.


Sign in / Sign up

Export Citation Format

Share Document