scholarly journals Derivation of the Schrödinger equation from the Hamilton–Jacobi equation in Feynman's path integral formulation of quantum mechanics

2010 ◽  
Vol 32 (1) ◽  
pp. 63-87 ◽  
Author(s):  
J H Field
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alon E. Faraggi

The equivalence postulate of quantum mechanics offers an axiomatic approach to quantum field theories and quantum gravity. The equivalence hypothesis can be viewed as adaptation of the classical Hamilton-Jacobi formalism to quantum mechanics. The construction reveals two key identities that underlie the formalism in Euclidean or Minkowski spaces. The first is a cocycle condition, which is invariant underD-dimensional Möbius transformations with Euclidean or Minkowski metrics. The second is a quadratic identity which is a representation of theD-dimensional quantum Hamilton-Jacobi equation. In this approach, the solutions of the associated Schrödinger equation are used to solve the nonlinear quantum Hamilton-Jacobi equation. A basic property of the construction is that the two solutions of the corresponding Schrödinger equation must be retained. The quantum potential, which arises in the formalism, can be interpreted as a curvature term. The author proposes that the quantum potential, which is always nontrivial and is an intrinsic energy term characterising a particle, can be interpreted as dark energy. Numerical estimates of its magnitude show that it is extremely suppressed. In the multiparticle case the quantum potential, as well as the mass, is cumulative.


1995 ◽  
Vol 73 (7-8) ◽  
pp. 478-483
Author(s):  
Rachad M. Shoucri

The self-adjoint form of the classical equation of motion of the harmonic oscillator is used to derive a Hamiltonian-like equation and the Schrödinger equation in quantum mechanics. A phase variable ϕ(t) instead of time t is used as an independent variable. It is shown that the Hamilton–Jacobi solution in this case is identical with the solution obtained from the Schrödinger equation without the need to introduce the idea of hidden variables or quantum potential.


2012 ◽  
Vol 13 (01) ◽  
pp. 1250007
Author(s):  
SIMON HOCHGERNER

Let Q be a Riemannian G-manifold. This paper is concerned with the symmetry reduction of Brownian motion in Q and ramifications thereof in a Hamiltonian context. Specializing to the case of polar actions, we discuss various versions of the stochastic Hamilton–Jacobi equation associated to the symmetry reduction of Brownian motion and observe some similarities to the Schrödinger equation of the quantum–free particle reduction as described by Feher and Pusztai [10]. As an application we use this reduction scheme to derive examples of quantum Calogero–Moser systems from a stochastic setting.


Author(s):  
Chandra Halim ◽  
M. Farchani Rosyid

The implementation of Lévy path integral generated by Lévy stochastic process on fractional Schrödinger equation has been investigated in the framework of fractional quantum mechanics. As the comparison, the implementation of Feynmann path integral generated by Wiener stochastic process on Schrödinger equation also has been investigated in the framework of standard quantum mechanics. There are two stochastic processes. There are Lévy stochastic and Wiener stochastic process. Both of them are able to produce fractal. In fractal’s concept, there is a value known as fractal dimension. The implementation of fractal dimension is the diffusion equation obtained by using Fokker Planck equation. In this paper, Lévy and Wiener fractal dimension have been obtained. There are  for Lévy and 2 for Wiener/Brown fractal dimension. Fractional quantum mechanics is generalization of standard quantum mechanics. A fractional quantum mechanics state is represented by wave function from fractional Schrödinger equation. Fractional Schrödinger equation is obtained by using kernel of Lévy path integral generated by Lévy stochastic process. Otherwise, standard quantum mechanics state is represented by wave function from standard Schrödinger equation. Standard Schrödinger equation is obtained by using kernel of Feynmann path integral generated by Wiener/Brown stochastic process.  Both Lévy and Feynmann Kernel have been investigated and the outputs are the Fourier Integral momentum phase of those kernels. We find that the forms of those kernels have similiraty. Therefore, we obtain Schrödinger equation from Lévy and Feynmann Kernel and also the comparison of Lévy energy in fractional quantum mechanics and particle energy in standard quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document