scholarly journals The Equivalence Postulate of Quantum Mechanics, Dark Energy, and the Intrinsic Curvature of Elementary Particles

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alon E. Faraggi

The equivalence postulate of quantum mechanics offers an axiomatic approach to quantum field theories and quantum gravity. The equivalence hypothesis can be viewed as adaptation of the classical Hamilton-Jacobi formalism to quantum mechanics. The construction reveals two key identities that underlie the formalism in Euclidean or Minkowski spaces. The first is a cocycle condition, which is invariant underD-dimensional Möbius transformations with Euclidean or Minkowski metrics. The second is a quadratic identity which is a representation of theD-dimensional quantum Hamilton-Jacobi equation. In this approach, the solutions of the associated Schrödinger equation are used to solve the nonlinear quantum Hamilton-Jacobi equation. A basic property of the construction is that the two solutions of the corresponding Schrödinger equation must be retained. The quantum potential, which arises in the formalism, can be interpreted as a curvature term. The author proposes that the quantum potential, which is always nontrivial and is an intrinsic energy term characterising a particle, can be interpreted as dark energy. Numerical estimates of its magnitude show that it is extremely suppressed. In the multiparticle case the quantum potential, as well as the mass, is cumulative.

1995 ◽  
Vol 73 (7-8) ◽  
pp. 478-483
Author(s):  
Rachad M. Shoucri

The self-adjoint form of the classical equation of motion of the harmonic oscillator is used to derive a Hamiltonian-like equation and the Schrödinger equation in quantum mechanics. A phase variable ϕ(t) instead of time t is used as an independent variable. It is shown that the Hamilton–Jacobi solution in this case is identical with the solution obtained from the Schrödinger equation without the need to introduce the idea of hidden variables or quantum potential.


2012 ◽  
Vol 13 (01) ◽  
pp. 1250007
Author(s):  
SIMON HOCHGERNER

Let Q be a Riemannian G-manifold. This paper is concerned with the symmetry reduction of Brownian motion in Q and ramifications thereof in a Hamiltonian context. Specializing to the case of polar actions, we discuss various versions of the stochastic Hamilton–Jacobi equation associated to the symmetry reduction of Brownian motion and observe some similarities to the Schrödinger equation of the quantum–free particle reduction as described by Feher and Pusztai [10]. As an application we use this reduction scheme to derive examples of quantum Calogero–Moser systems from a stochastic setting.


2021 ◽  
Author(s):  
Владислав Хаблов

In this paper we analyze the asymptotics of the Schrödinger equation solutions with respect to a small parameter ~. It is well known, that short- waveasymptoticstosolutionsofthisequationleadstothepairofequations— the Hamilton–Jacobi equation for the phase and the continuity equation. These equations coincide with the ones for the potential flows of an ideal fluid. The wave function is invariant with respect to the complex plane rotations group, and the asymptotics is constructed as a point-dependent action of this group on some function that is found by solving the transfer equation. It is shown in the paper, that if the Heisenberg group is used instead of the rotation group, then the limit of the equations solutions with ~ tending to zero leads to the equations for vortex flows of an ideal fluid in a potential field of forces. If the original Schrödinger equation is nonlinear, then equations for barotropic processes in an ideal fluid are obtained.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


2020 ◽  
Author(s):  
Daniel A. Fleisch

Quantum mechanics is a hugely important topic in science and engineering, but many students struggle to understand the abstract mathematical techniques used to solve the Schrödinger equation and to analyze the resulting wave functions. Retaining the popular approach used in Fleisch's other Student's Guides, this friendly resource uses plain language to provide detailed explanations of the fundamental concepts and mathematical techniques underlying the Schrödinger equation in quantum mechanics. It addresses in a clear and intuitive way the problems students find most troublesome. Each chapter includes several homework problems with fully worked solutions. A companion website hosts additional resources, including a helpful glossary, Matlab code for creating key simulations, revision quizzes and a series of videos in which the author explains the most important concepts from each section of the book.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


Sign in / Sign up

Export Citation Format

Share Document