Spectra and E 2 Transition Rates in 116-132 Xe in the IBM

2000 ◽  
Vol 33 (4) ◽  
pp. 593-598 ◽  
Author(s):  
Li ZhongZe ◽  
Liu FengYing ◽  
Ji HuaYing ◽  
Zhang JinFu ◽  
Pak JaeYon
Keyword(s):  
2021 ◽  
Vol 155 (3) ◽  
pp. 034105
Author(s):  
Taha Selim ◽  
Arthur Christianen ◽  
Ad van der Avoird ◽  
Gerrit C. Groenenboom

Aquaculture ◽  
2021 ◽  
Vol 541 ◽  
pp. 736825
Author(s):  
Jonathan S.F. Lee ◽  
Melissa L. Pierce ◽  
Rachel S. Poretsky ◽  
Matthew A. Cook ◽  
Barry A. Berejikian ◽  
...  

2021 ◽  
pp. 096228022199750
Author(s):  
Zvifadzo Matsena Zingoni ◽  
Tobias F Chirwa ◽  
Jim Todd ◽  
Eustasius Musenge

There are numerous fields of science in which multistate models are used, including biomedical research and health economics. In biomedical studies, these stochastic continuous-time models are used to describe the time-to-event life history of an individual through a flexible framework for longitudinal data. The multistate framework can describe more than one possible time-to-event outcome for a single individual. The standard estimation quantities in multistate models are transition probabilities and transition rates which can be mapped through the Kolmogorov-Chapman forward equations from the Bayesian estimation perspective. Most multistate models assume the Markov property and time homogeneity; however, if these assumptions are violated, an extension to non-Markovian and time-varying transition rates is possible. This manuscript extends reviews in various types of multistate models, assumptions, methods of estimation and data features compatible with fitting multistate models. We highlight the contrast between the frequentist (maximum likelihood estimation) and the Bayesian estimation approaches in the multistate modeling framework and point out where the latter is advantageous. A partially observed and aggregated dataset from the Zimbabwe national ART program was used to illustrate the use of Kolmogorov-Chapman forward equations. The transition rates from a three-stage reversible multistate model based on viral load measurements in WinBUGS were reported.


2002 ◽  
Vol 43 (4) ◽  
pp. 541-557 ◽  
Author(s):  
Xianping Guo ◽  
Weiping Zhu

AbstractIn this paper, we consider denumerable state continuous time Markov decision processes with (possibly unbounded) transition and cost rates under average criterion. We present a set of conditions and prove the existence of both average cost optimal stationary policies and a solution of the average optimality equation under the conditions. The results in this paper are applied to an admission control queue model and controlled birth and death processes.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


Sign in / Sign up

Export Citation Format

Share Document