The Effect of Spin-Orbit Coupling and Spin-Spin Coupling of Compact Binaries on Chaos

2015 ◽  
Vol 64 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Hong Wang ◽  
Guo-Qing Huang

The electron resonance spectrum of SO has been previously shown to arise from SO in two electronic states, the ground 3 Ʃ - and the excited 1 ∆ state. In this paper the portion of the spectrum assigned to the 3 Ʃ - state is analysed and shown to arise from three isotopic species, 32 S 16 O, 33 S 16 O, and 34 S 16 O. The analysis shows that besides the dominant interaction of the unpaired electronic spins with the magnetic field; other interactions must be taken into account to interpret the spectrum accurately. Interactions with electronic orbital angular momentum of π states mixed in by spin-orbit coupling and with rotationally induced magnetic moments have been observed. Values for parameters measuring such interactions have been determined from the spectrum, and these values lead to a resolution of the first- and second-order contributions to the zero-field molecular constants as well as an approximate value for the spin-orbit coupling constant. The hyperftne structure resulting from 33 S in 33 S 16 O has also been observed and is related to the usual hyperfine coupling constants. The expected line strengths and widths for SO have been calculated and these are compared with the observed quantities. Besides the expected lines from the isotopic SO species in the 3 Ʃ - state, several other lines have been detected. These lines are interpreted as arising from 32 S 16 O in the ground electronic state, but in the first excited vibrational level. The spectrum of vibrationally excited SO allows a value of the spin-spin coupling constant in the first excited vibrational state to be determined.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 584
Author(s):  
Xu-Hui Cheng ◽  
Guo-Qing Huang

In relativistic celestial mechanics, post-Newtonian (PN) Lagrangian and PN Hamiltonian formulations are not equivalent to the same PN order as our previous work in PRD (2015). Usually, an approximate Lagrangian is used to discuss the difference between a PN Hamiltonian and a PN Lagrangian. In this paper, we investigate the dynamics of compact binary systems for Hamiltonians and Lagrangians, including Newtonian, post-Newtonian (1PN and 2PN), and spin–orbit coupling and spin–spin coupling parts. Additionally, coherent equations of motion for 2PN Lagrangian are adopted here to make the comparison with Hamiltonian approaches and approximate Lagrangian approaches at the same condition and same PN order. The completely opposite nature of the dynamics shows that using an approximate PN Lagrangian is not convincing. Hence, using the coherent PN Lagrangian is necessary for obtaining an exact result in the research of dynamics of compact binary at certain PN order. Meanwhile, numerical investigations from the spinning compact binaries show that the 2PN term plays an important role in causing chaos in the PN Hamiltonian system.


2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


2019 ◽  
Vol 31 (18) ◽  
pp. 185802 ◽  
Author(s):  
Sayantika Bhowal ◽  
Shreemoyee Ganguly ◽  
Indra Dasgupta

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Sign in / Sign up

Export Citation Format

Share Document