excited vibrational state
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 2)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
Eugenio Fasci ◽  
Stefania Gravina ◽  
Giuseppe Porzio ◽  
Antonio Castrillo ◽  
Livio Gianfrani

Abstract Doppler-free saturated-absorption Lamb dips are observed for weak vibration-rotation transitions of C2H2 between 7167 and 7217 cm−1, using a frequencycomb assisted cavity ring-down spectrometer based on the use of a pair of phase-locked diode lasers. We measured the absolute center frequency of sixteen lines belonging to the 2ν3 + ν15 band, targeting ortho and para states of the molecule. Line pairs of the P and Q branches were selected so as to form a “V”-scheme, sharing the lower energy level. Such a choice made it possible to determine the rotational energy separations of the excited vibrational state for J-values from 11 to 20. Line-center frequencies are determined with an overall uncertainty between 2 and 13 kHz. This is over three order of magnitude more accurate than previous experimental studies in the spectral region around the wavelength of 1.4 μm. The retrieved energy separations provide a stringent test of the so-called MARVEL method recently applied to acetylene.


2018 ◽  
Vol 612 ◽  
pp. A48 ◽  
Author(s):  
K. T. Wong ◽  
K. M. Menten ◽  
T. Kamiński ◽  
F. Wyrowski ◽  
J. H. Lacy ◽  
...  

Context. The circumstellar ammonia (NH3) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH3 abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry.Aims. We would like to characterise the spatial distribution and excitation of NH3 in the oxygen-rich circumstellar envelopes (CSEs) of four diverse targets: IK Tau, VY CMa, OH 231.8+4.2, and IRC +10420. Methods. We observed NH3 emission from the ground state in the inversion transitions near 1.3 cm with the Very Large Array (VLA) and submillimetre rotational transitions with the Heterodyne Instrument for the Far-Infrared (HIFI) aboard Herschel Space Observatory from all four targets. For IK Tau and VY CMa, we observed NH3 rovibrational absorption lines in the ν2 band near 10.5 μm with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). We also attempted to search for the rotational transition within the excited vibrational state (v2 = 1) near 2 mm with the IRAM 30m Telescope. Non-LTE radiative transfer modelling, including radiative pumping to the vibrational state, was carried out to derive the radial distribution of NH3 in the CSEs of these targets. Results. We detected NH3 inversion and rotational emission in all four targets. IK Tau and VY CMa show blueshifted absorption in the rovibrational spectra. We did not detect vibrationally excited rotational transition from IK Tau. Spatially resolved VLA images of IK Tau and IRC +10420 show clumpy emission structures; unresolved images of VY CMa and OH 231.8+4.2 indicate that the spatial-kinematic distribution of NH3 is similar to that of assorted molecules, such as SO and SO2, that exhibit localised and clumpy emission. Our modelling shows that the NH3 abundance relative to molecular hydrogen is generally of the order of 10−7, which is a few times lower than previous estimates that were made without considering radiative pumping and is at least ten times higher than that in the carbon-rich CSE of IRC +10216. NH3 in OH 231.8+4.2 and IRC +10420 is found to emit in gas denser than the ambient medium. Incidentally, we also derived a new period of IK Tau from its V-band light curve. Conclusions. NH3 is again detected in very high abundance in evolved stars, especially the oxygen-rich ones. Its emission mainly arises from localised spatial-kinematic structures that are probably denser than the ambient gas. Circumstellar shocks in the accelerated wind may contribute to the production of NH3. Future mid-infrared spectroscopy and radio imaging studies are necessary to constrain the radii and physical conditions of the formation regions of NH3.


2018 ◽  
Vol 5 (3) ◽  
pp. 122-124 ◽  
Author(s):  
G. Majstorovic ◽  
M. Vasiljevic ◽  
N. Šišovic

Optical emission spectroscopy technique was used to measure gas temperature along the axis of cylindrical abnormal glow discharge parallel to the copper cathode surface (side-on) in hydrogen-argon mixture at low pressure. The rotational temperature of excited state of H<sub>2</sub> was determined from the rotational structure of Q branch of Fulcher-α diagonal bands using Boltzmann plot technique while the obtained ground vibrational state temperature is assumed to be equal to gas temperature. The temperature T<sub>0</sub> determined from the rotational population density distribution in an excited vibrational state can be considered as a valid estimation of the ground state temperatutre i.e. H<sub>2</sub> gas temperature.


Sign in / Sign up

Export Citation Format

Share Document