A Novel Bi-wavelength Method for Accurately Measuring Gain and Noise Characteristics of an Erbium-Doped Fibre Amplifier for Multi-Channel Wavelength Division Multiplexing Transmission

2003 ◽  
Vol 20 (10) ◽  
pp. 1777-1780 ◽  
Author(s):  
Liu Yan-Ge ◽  
Meng Hong-Yun ◽  
Yuan Shu-Zhong ◽  
Tian Jian-Guo ◽  
Kai Gui-Yun ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Asraful Sekh ◽  
Mijanur Rahim ◽  
Anjumanara Begam

Abstract In this paper, design of erbium-doped fiber amplifiers (EDFA) based 16 channel wavelength-division multiplexing (WDM) system for different pump powers and input signal levels using counter propagating pumping scheme is reported. Wavelength range between 1548 and 1560 nm in C-band with channel spacing of 0.75 nm at a bit rate of 10 Gbps are used. Input power given to all the channels is taken between −20 and −35 dBm with 3 dBm variation. Pump power levels between 100 and 500 mW at 980 nm wavelength are used. Low gain flatness with high gains and low noise figures are achieved with the proposed scheme.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Suraj Jain ◽  
Chakresh Kumar

AbstractThis paper aims to analyze the performance of FBG 60 channel wavelength-division multiplexing system using different optical amplifiers namely RAMAN, erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) separately at 10 Gbps data rate up to a fiber length of 280 km. Based upon the results, the performance of the three amplifiers has been compared on the basis of multiple performance parameters. It is seen that EDFA simulates good results in terms of bit error rate (BER) up to a fiber distance of approximately 80 km and Q factor up to a distance of approximately 90 km among all the three amplifiers. However, power received is least in EDFA. RAMAN amplifier provides a better Q factor after the fiber distance of approximately 90 km and a better BER after the fiber distance of approximately 80 km compared to the other three amplifiers. SOA shows better results in terms of power received up to a fiber distance of approximately 100 km. RAMAN amplifier provides better output power after a distance of 100 km. Eye diagrams and power spectrums of the network with different optical amplifiers has also been analyzed.


2019 ◽  
Vol 40 (4) ◽  
pp. 341-346
Author(s):  
Kulwinder Singh ◽  
Karan Goel ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different fiber amplifiers such as semiconductor optical amplifier, erbium-doped fiber amplifier and erbium ytterbium-co-doped fiber amplifier (EYCDFA) are investigated for 16×40 GB/s wavelength division multiplexing system. Various performance parameters including Q-factor, bit error rate, jitter, eye opening and eye closure are observed and analyzed. It is reported that EYCDFA is a better choice among the tested amplifiers. The proposed system is also investigated in terms of transmission distance.


2000 ◽  
Vol 47 (9) ◽  
pp. 1599-1605 ◽  
Author(s):  
S. Selvakennedy ◽  
P. Poopalan ◽  
M. A. Mahdi ◽  
H. Ahmad

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
◽  
Chakresh Kumar

AbstractIn this paper we have study the performance of different optical amplifiers (Erbium doped amplifier (EDFA), RAMAN amplifier, and semiconductor optical amplifier (SOA)) for 80 channels wavelength division multiplexing (WDM) system with the data rate at 10 Gbps data rate for the transmission distance of 280 km After getting the results of these amplifiers the performance of these has to be compared The Q-factor values achieved better in EDFA as compared to SOA and RAMAN. While the BER getting good in SOA as compared with other amplifiers but in EDFA after 200 km it goes saturated, the Power achieved at the power estimator is getting better in EDFA optical amplifier while in other amplifier it achieved negative. At the end it is also study the Power with frequency in THz and the Eye Diagram of such amplifiers results.


Author(s):  
Ahmed Zaki Rashed

<p>Fiber Raman amplifiers in ultra wide wavelength division multiplexing (UW-WDM) systems have recently received much more attention because of their greatly extended bandwidth and distributed amplification with the installed fiber as gain medium. It has been shown that the bandwidth of the amplifier can be further increased and gain spectrum can be tailored by using pumping with multiple wavelengths. Wide gain of the amplifier is considered where two sets of pumps N<sub>R</sub> {5,10} are investigated. The gain coefficient is cast under polynomial forms. The pumping wavelength l<sub>R</sub> is over the range 1.40 £ l<sub>R</sub>, mm £ 1.44 and the channel wavelength l<sub>s</sub> is over the range 1.45 £ l<sub>s</sub>, mm £ 1.65. Two multiplexing techniques are processed in long-haul transmission cables where number of channels is up to 10000 in ultra-wide wavelength division multiplexing (UW-WDM) with number of links up to 480. The problem is investigated over wide ranges of affecting sets of parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document