optical amplifier
Recently Published Documents


TOTAL DOCUMENTS

3128
(FIVE YEARS 286)

H-INDEX

59
(FIVE YEARS 6)

Author(s):  
Yazan Alkhlefat ◽  
Sevia Mahdaliza Idrus Sutan Nameh ◽  
Farabi M. Iqbal

Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software.


Author(s):  
Taiwo Samuel Aina

Abstract: The goal of this project is to design and analyse a radio over fibre system for a four-story hospital with 20 rooms on each floor. The number of ONUs per floor is 20, and it was assumed that each room had an ONU capable of providing network access to voice, data, video, and biometrics. We build an 80-channel WDM optical transmitter using the WDM method. The proposed system includes a transmitter with 20 input channels, a multiplexer, a DE multiplexer, a 45-kilometer optical fibre, and an amplifier. The proposed model was simulated, and the results were evaluated in WDM systems using an optical amplifier. The receiver performance analysis of the Optical Communication System is shown by the BER simulation run and the eye diagram graphic, with the threshold set at 0.00120739. Furthermore, the eye height is 0.00141402, and the minimum BER is 5.59009e-006. When the simulated and calculated values of received power and total power loss are compared, the system is efficient. Keywords: Radio over fibre, Optical Amplifier, WDM system, DE multiplexer, Multiplexer, BER, Optical transmitter


Author(s):  
Kouichi AKAHANE ◽  
Atsushi Matsumoto ◽  
Umezawa Toshimasa ◽  
Naokatsu YAMAMOTO ◽  
Yuki Yata ◽  
...  

Abstract Random signal generation in a ring resonator laser is achieved with quantum-dot semiconductor optical amplifiers. The lasing spectra were obtained over a wide range of wavelength, and the individual longitudinal modes acted as the channels for random number generation.


2022 ◽  
Vol 70 (3) ◽  
pp. 5487-5489
Author(s):  
Usman Masud ◽  
Fathe Jeribi ◽  
Mohammed Alhameed ◽  
Faraz Akram ◽  
Ali Tahir ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 365
Author(s):  
Hong-Sing Lee ◽  
Chun-Liang Yang ◽  
Chien-Hsiang Chou

This paper demonstrates a wavelength-division-multiplexed passive optical network (WDM-PON) scheme based on novel reconfigurable optical amplifiers (ROAs). The measured switching characteristics of the ROA3 constructed with a 2 × 2 crossbar optical switch and a four-port reversible optical circulator (OC) and a conventional EDFA can meet the requirements of most network management and surveillance. The self-made four-port reversible OC’s response time is less than 2 ms, and its insertion losses are about 1 dB or less for all the transmission paths and switching states. An optimal design of ROAs is proposed and evaluated for bidirectional optical amplifier protection, in which ROA3 has an EDF length of 7.5 m long with a 1480 nm pump laser and possesses a backward or forward pumping configuration with the corresponding pump power of 200 mW or 50 mW. We verified the scheme’s feasibility through a simulation of WDM-PON systems with 40 downstream and upstream channels. This scheme enables the intelligent protection switching in practical operation scenarios for high-capacity multi-wavelength networks.


Sign in / Sign up

Export Citation Format

Share Document