Ferroelectric Transition and Curie—Weiss Behavior in Some Filled Tungsten Bronze Ceramics

2014 ◽  
Vol 31 (1) ◽  
pp. 015201 ◽  
Author(s):  
Xiao-Li Zhu ◽  
Xiang-Ming Chen
2018 ◽  
Vol 112 (26) ◽  
pp. 262904 ◽  
Author(s):  
Wen Bin Feng ◽  
Xiao Li Zhu ◽  
Xiao Qiang Liu ◽  
Xiang Ming Chen

2013 ◽  
Vol 97 (2) ◽  
pp. 507-512 ◽  
Author(s):  
C. J. Huang ◽  
K. Li ◽  
X. Q. Liu ◽  
X. L. Zhu ◽  
X. M. Chen

2021 ◽  
Vol 129 (24) ◽  
pp. 244107
Author(s):  
Ying Wang ◽  
Tu Lai Sun ◽  
Xiao Li Zhu ◽  
Lu Liu ◽  
Xiang Ming Chen

Author(s):  
T. Egami ◽  
H. D. Rosenfeld ◽  
S. Teslic

Relaxor ferroelectrics, such as Pb(Mg1/3Nb2/3)O3 (PMN) or (Pb·88La ·12)(Zr·65Ti·35)O3 (PLZT), show diffuse ferroelectric transition which depends upon frequency of the a.c. field. In spite of their wide use in various applications details of their atomic structure and the mechanism of relaxor ferroelectric transition are not sufficiently understood. While their crystallographic structure is cubic perovskite, ABO3, their thermal factors (apparent amplitude of thermal vibration) is quite large, suggesting local displacive disorder due to heterovalent ion mixing. Electron microscopy suggests nano-scale structural as well as chemical inhomogeneity.We have studied the atomic structure of these solids by pulsed neutron scattering using the atomic pair-distribution analysis. The measurements were made at the Intense Pulsed Neutron Source (IPNS) of Argonne National Laboratory. Pulsed neutrons are produced by a pulsed proton beam accelerated to 750 MeV hitting a uranium target at a rate of 30 Hz. Even after moderation by a liquid methane moderator high flux of epithermal neutrons with energies ranging up to few eV’s remain.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Author(s):  
Yalong Zou ◽  
Jiabo Le ◽  
Yufeng Cao ◽  
Na An ◽  
Yang Zhou ◽  
...  

The attractive photoelectrochemical (PEC) water splitting for hydrogen fuels always desires new semiconductors which provide stronger visible light absorption with suitable band positions. Sn(II) complex oxides are expected to offer...


Sign in / Sign up

Export Citation Format

Share Document