scholarly journals Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu3Zn(OH)6FBr

2021 ◽  
Vol 38 (9) ◽  
pp. 097501
Author(s):  
Yuan Wei ◽  
Xiaoyan Ma ◽  
Zili Feng ◽  
Yongchao Zhang ◽  
Lu Zhang ◽  
...  
2019 ◽  
Vol 116 (29) ◽  
pp. 14505-14510 ◽  
Author(s):  
Ruidan Zhong ◽  
Shu Guo ◽  
Guangyong Xu ◽  
Zhijun Xu ◽  
Robert J. Cava

Currently under active study in condensed matter physics, both theoretically and experimentally, are quantum spin liquid (QSL) states, in which no long-range magnetic ordering appears at low temperatures due to strong quantum fluctuations of the magnetic moments. The existing QSL candidates all have their intrinsic disadvantages, however, and solid evidence for quantum fluctuations is scarce. Here, we report a previously unreported compound, Na2BaCo(PO4)2, a geometrically frustrated system with effective spin-1/2 local moments for Co2+ ions on an isotropic 2-dimensional (2D) triangular lattice. Magnetic susceptibility and neutron scattering experiments show no magnetic ordering down to 0.05 K. Thermodynamic measurements show that there is a tremendous amount of magnetic entropy present below 1 K in 0-applied magnetic field. The presence of localized low-energy spin fluctuations is revealed by inelastic neutron measurements. At low applied fields, these spin excitations are confined to low energy and contribute to the anomalously large specific heat. In larger applied fields, the system reverts to normal behavior as evident by both neutron and thermodynamic results. Our experimental characterization thus reveals that this material is an excellent candidate for the experimental realization of a QSL state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oliver Hart ◽  
Yuan Wan ◽  
Claudio Castelnovo

AbstractRealistic model Hamiltonians for quantum spin liquids frequently exhibit a large separation of energy scales between their elementary excitations. At intermediate, experimentally relevant temperatures, some excitations are sparse and hop coherently, whereas others are thermally incoherent and dense. Here, we study the interplay of two such species of quasiparticle, dubbed spinons and visons, which are subject to nontrivial mutual statistics – one of the hallmarks of quantum spin liquid behaviour. Our results for $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquids show an intriguing feedback mechanism, akin to the Nagaoka effect, whereby spinons become localised on temperature-dependent patches of expelled visons. This phenomenon has important consequences for the thermodynamic and transport properties of the system, as well as for its response to quenches in temperature. We argue that these effects can be measured in experiments and may provide viable avenues for obtaining signatures of quantum spin liquid behaviour.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
S. Kundu ◽  
Aga Shahee ◽  
Atasi Chakraborty ◽  
K. M. Ranjith ◽  
B. Koo ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxiang Li ◽  
T. T. Zhang ◽  
A. Said ◽  
G. Fabbris ◽  
D. G. Mazzone ◽  
...  

AbstractThe Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we detect anomalous phonon effects in α-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. These phonon anomalies signify the coupling of phonon and Kitaev magnetic excitations in α-RuCl3 and demonstrates a proof-of-principle method to detect anomalous excitations in topological quantum materials.


Author(s):  
Yasir Iqbal ◽  
Tobias Müller ◽  
Kira Riedl ◽  
Johannes Reuther ◽  
Stephan Rachel ◽  
...  

2014 ◽  
Vol 551 ◽  
pp. 012004 ◽  
Author(s):  
J C Orain ◽  
L Clark ◽  
F Bert ◽  
P Mendels ◽  
P Attfield ◽  
...  

2D Materials ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 015014 ◽  
Author(s):  
Luojun Du ◽  
Yuan Huang ◽  
Yimeng Wang ◽  
Qinqin Wang ◽  
Rong Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document