large intensity
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Kartika Sri Kumala Sari ◽  
Wati Wati ◽  
Syafii Syafii

This paper presents an analysis and feasibility of grid connected PV System for small scale home industry of welding workshop in Kambang Pesisir Selatan, Indonesia. The purpose of this paper is to analyze the feasibility of the on-grid PV system and obtain a comparison of the simulation results between the PV connected and only grid. The optimization results show that a feasible and optimal design configuration is a gid-connected PV system consisting of a Grid, PV system 3.48 kW, and a 5 kW inverter because it has a large intensity of solar radiation, which produces an economical generating system with a COE of Rp. 829/kWh, smaller than the basic cost of electricity provision that has been determined by the Ministry of Energy and Mineral Resources, which is IDR 1,058/kWh, in accordance with the criteria, the project is feasible to build.


Author(s):  
Kartika Sri Kumala Sari ◽  
Wati Wati ◽  
Syafii Syafii

This paper presents an analysis and feasibility of grid connected PV System for small scale home industry of welding workshop in Kambang Pesisir Selatan, Indonesia. The purpose of this paper is to analyze the feasibility of the on-grid PV system and obtain a comparison of the simulation results between the PV connected and only grid. The optimization results show that a feasible and optimal design configuration is a gid-connected PV system consisting of a Grid, PV system 3.48 kW, and a 5 kW inverter because it has a large intensity of solar radiation, which produces an economical generating system with a COE of Rp. 829/kWh, smaller than the basic cost of electricity provision that has been determined by the Ministry of Energy and Mineral Resources, which is IDR 1,058/kWh, in accordance with the criteria, the project is feasible to build.


2021 ◽  
Vol 53 (4) ◽  
pp. 1190-1221
Author(s):  
Bo Li ◽  
Guodong Pang

AbstractWe study shot noise processes with cluster arrivals, in which entities in each cluster may experience random delays (possibly correlated), and noises within each cluster may be correlated. We prove functional limit theorems for the process in the large-intensity asymptotic regime, where the arrival rate gets large while the shot shape function, cluster sizes, delays, and noises are unscaled. In the functional central limit theorem, the limit process is a continuous Gaussian process (assuming the arrival process satisfies a functional central limit theorem with a Brownian motion limit). We discuss the impact of the dependence among the random delays and among the noises within each cluster using several examples of dependent structures. We also study infinite-server queues with cluster/batch arrivals where customers in each batch may experience random delays before receiving service, with similar dependence structures.


2021 ◽  
Vol 11 (21) ◽  
pp. 10484
Author(s):  
Chinnathambi Rajivganthi ◽  
Fathalla A. Rihan

In this paper, we study the global dynamics of a stochastic viral infection model with humoral immunity and Holling type II response functions. The existence and uniqueness of non-negative global solutions are derived. Stationary ergodic distribution of positive solutions is investigated. The solution fluctuates around the equilibrium of the deterministic case, resulting in the disease persisting stochastically. The extinction conditions are also determined. To verify the accuracy of the results, numerical simulations were carried out using the Euler–Maruyama scheme. White noise’s intensity plays a key role in treating viral infectious diseases. The small intensity of white noises can maintain the existence of a stationary distribution, while the large intensity of white noises is beneficial to the extinction of the virus.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
S. Leo Kingston ◽  
Arindam Mishra ◽  
Marek Balcerzak ◽  
Tomasz Kapitaniak ◽  
Syamal K. Dana

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1061
Author(s):  
Gunwoo Do ◽  
Hyeong-Seog Kim

The effect of the jet stream on the changes in the intensity of tropical cyclones (TC) affecting Korea is discussed. We classified the TCs into three categories based on the decreasing rate of TC intensity in 24 h after TC passed 30° N. The TCs with a large intensity decrease had a more vigorous intensity when the TCs approached the mid-latitudes. The analysis of observational fields showed that the strong jet stream over Korea and Japan may intensify TCs by the secondary circulations of jet entrance but induces a large decrease in TC intensity in the mid-latitudes by the strong vertical wind shear. We also performed the numerical simulation for the effect of the jet stream on the intensity changes of Typhoon Chaba (2016). As a result, the stronger jet stream induced more low-level moisture convergence at the south of the jet stream entrance, enhancing the intensity when the TC approached Korea. Furthermore, it induced a rapid reduction in intensity when TC approached in the strong jet stream area. The results suggest that the upper-level jet stream is one of the critical factors modulating the intensity of TC affecting Korea in the vicinity of the mid-latitudes.


2021 ◽  
Vol 2 (01) ◽  
pp. 13-23
Author(s):  
Aesha Fathara

Electricity is a primary need for society. Energy that will never run out of availability is energy from solar radiation. Indonesia is an agricultural country that can utilize alternative energy by utilizing biomass energy, one of which is rice husk and straw waste. Based on data from the BMKG Paloh Station, Sambas Regency has a fairly large intensity of sunlight because it is located just below the equator. The intensity of light in the dry season can reach 6 hours in a period of 8 hours of sunlight, namely from 8.00 - 16.00. The resulting energy conversion is 38.01 mj/m2/day. Meanwhile, for the biomass potential from the BPS data of Sambas Regency in Tebas District, there are 6,730 ha of rice fields, which can produce 403 tons of rice husk and straw waste in one day for 1 year and can produce 5 million Mj/day . The results of the conversion analysis of the optimization of renewable energy for power plants that have an annual peak power of 45kW and daily energy consumption of 330kWh/day obtained the most optimal potential for rice husk and straw waste, which requires an initial capital of $ 67,120 with a total net present minimum cost. Electricity from the system cost is also minimum at US$ 0.005/kWh. And in technical economic analysis, modeling this system requires a payback period of about 11 years without grid bills and 5 years with grid bills. Meanwhile, conversion using PV requires larger capital and longer payback.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxiang Li ◽  
T. T. Zhang ◽  
A. Said ◽  
G. Fabbris ◽  
D. G. Mazzone ◽  
...  

AbstractThe Kitaev quantum spin liquid epitomizes an entangled topological state, for which two flavors of fractionalized low-energy excitations are predicted: the itinerant Majorana fermion and the Z2 gauge flux. It was proposed recently that fingerprints of fractional excitations are encoded in the phonon spectra of Kitaev quantum spin liquids through a novel fractional-excitation-phonon coupling. Here, we detect anomalous phonon effects in α-RuCl3 using inelastic X-ray scattering with meV resolution. At high temperature, we discover interlaced optical phonons intercepting a transverse acoustic phonon between 3 and 7 meV. Upon decreasing temperature, the optical phonons display a large intensity enhancement near the Kitaev energy, JK~8 meV, that coincides with a giant acoustic phonon softening near the Z2 gauge flux energy scale. These phonon anomalies signify the coupling of phonon and Kitaev magnetic excitations in α-RuCl3 and demonstrates a proof-of-principle method to detect anomalous excitations in topological quantum materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nantao Li ◽  
Taylor D. Canady ◽  
Qinglan Huang ◽  
Xing Wang ◽  
Glenn A. Fried ◽  
...  

AbstractInterferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC’s photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm−2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.


2021 ◽  
Vol 12 (1) ◽  
pp. 837-843
Author(s):  
Haris V T ◽  
Gobianand K

Hurdles that have a positive effect by inhibiting microorganisms may have a negative one on other parameters such as nutritional properties or sensory quality, depending on their intensity. In order to lower the preservative level, the hurdle technology concept has been developed, consisting in using combined hurdles to establish an additive antimicrobial effect, and even sometimes a synergetic one, thus improving the safety and the sensory quality of food. The antibacterial and anti-oxidant potential of copper oxide nano particles coupled with vitamin-E (CuONPs+VE) was investigated by applying the novel hurdle factors against seafood pathogens and by studying the cell viability using MTT assays. The hurdle method is proposed to explain the significance of combined use of different preservation factors as synergistic effects instead of using a large-intensity preservation factor. Effect of CuONPs+VE and chilling temperatures (-18°C and +4°C); and Effect of CuONPs+VE and brine salts at various concentrations (5%, 10%,) were evaluated. CuONPs+VE with different chilling temperatures and brine salt concentration showed significant results on compared to control temperatures. Thus CuONPs+VE due to their bacteriostatic activity can be efficiently used in hurdle technology which reduces the food spoiling organisms. Thus CuONPs+VE in combined with hurdle technology can be used as alternatives for chemical preservatives in preservation techniques.


Sign in / Sign up

Export Citation Format

Share Document