scholarly journals Self-similar collapse of a scalar field in higher dimensions

1999 ◽  
Vol 16 (2) ◽  
pp. 407-417 ◽  
Author(s):  
Andrei V Frolov
1997 ◽  
Vol 12 (10) ◽  
pp. 709-718 ◽  
Author(s):  
Takeshi Chiba ◽  
Masaru Siino

We investigate the quantum effects on the so-called critical phenomena in black hole formation. Quantum effects of a scalar field are treated semiclassically via a trace anomaly method. It is found that the demand of regularity at the origin implies the disappearance of the echo. It is also found that semiclassical equations of motion do not admit continuously self-similar solutions. The quantum effects would change the critical solution from a discretely self-similar one to a solution without critical phenomena.


2008 ◽  
Vol 77 (12) ◽  
Author(s):  
Masanori Kyo ◽  
Tomohiro Harada ◽  
Hideki Maeda
Keyword(s):  

2008 ◽  
Vol 17 (11) ◽  
pp. 2143-2158 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the first kind in 2+1 dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


2003 ◽  
Vol 12 (05) ◽  
pp. 791-799
Author(s):  
G. OLIVEIRA-NETO

We study an analytical solution to the Einstein's equations in (2+1)-dimensions, representing the self-similar collapse of a circularly symmetric, minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents the formation of naked singularities. Since our solution is asymptotically flat, these naked singularities may be relevant for the weak cosmic censorship conjecture in (2+1)-dimensions.


Sign in / Sign up

Export Citation Format

Share Document