scholarly journals The 9th Edoardo Amaldi conference on gravitational waves (Amaldi 9) and the 2011 Numerical Relativity and Data Analysis meeting (NRDA 2011), Cardiff, 10–15 July 2011

2012 ◽  
Vol 29 (12) ◽  
pp. 120301 ◽  
2007 ◽  
Vol 22 (13) ◽  
pp. 2361-2381 ◽  
Author(s):  
CHRISTIAN CORDA

Recently, with an enlightening treatment, Baskaran and Grishchuk have shown the presence and importance of the so-called "magnetic" components of gravitational waves (GW's), which have to be taken into account in the context of the total response functions of interferometers for GW's propagating from arbitrary directions. In this paper the analysis of the response functions for the magnetic components is generalized in its full frequency dependence, while in the work of Baskaran and Grishchuk the response functions were computed only in the approximation of wavelength much larger than the linear dimensions of the interferometer. It is also shown that the response functions to the magnetic components grow at high frequencies, differently from the values of the response functions to the well-known ordinary components that decrease at high frequencies. Thus the magnetic components could in principle become the dominant part of the signal at high frequencies. This is important for a potential detection of the signal at high frequencies and confirms that the magnetic contributions must be taken into account in the data analysis. More, the fact that the response functions of the magnetic components grow at high frequencies shows that, in principle, the frequency-range of Earth-based interferometers could extend to frequencies over 10000 Hz.


Author(s):  
John W. Moffat

At a press conference on February 11, 2016, David Reitz, LIGO Executive Director, announced, “We did it!” They detected gravitational waves for the first time. Both LIGO sites, in Washington state and Louisiana, registered the incoming gravitational waves from two black holes colliding and merging far away. Over the following months, more mergers were detected. Gravitational waves are caused by the acceleration of a massive object, which stretches and compresses spacetime in a wave-like motion that is incredibly small and difficult to detect. Numerical relativity research over decades has produced over a quarter of a million template solutions of Einstein’s equations. The best template fit to the wave form data identifies the masses and spins of the two merging black holes. Much of this chapter describes the technology of the LIGO apparatus. On October 3, 2017, Barish, Thorne, and Weiss, the founders of LIGO, received the Nobel Prize for Physics.


2000 ◽  
Vol 61 (4) ◽  
Author(s):  
Miguel Alcubierre ◽  
Gabrielle Allen ◽  
Bernd Brügmann ◽  
Gerd Lanfermann ◽  
Edward Seidel ◽  
...  

1998 ◽  
Vol 301 (2) ◽  
pp. 469-477 ◽  
Author(s):  
S. D. Mohanty ◽  
I. S. Heng ◽  
D. G. Blair ◽  
S. V. Dhurandhar ◽  
M. Tobar ◽  
...  

2000 ◽  
Vol 09 (03) ◽  
pp. 293-297 ◽  
Author(s):  
D. BUSKULIC ◽  
L. DEROME ◽  
R. FLAMINIO ◽  
F. MARION ◽  
L. MASSONET ◽  
...  

A new generation of large scale and complex Gravitational Wave detectors is building up. They will produce big amount of data and will require intensive and specific interactive/batch data analysis. We will present VEGA, a framework for such data analysis, based on ROOT. VEGA uses the Frame format defined as standard by GW groups around the world. Furthermore, new tools are developed in order to facilitate data access and manipulation, as well as interface with existing algorithms. VEGA is currently evaluated by the VIRGO experiment.


Sign in / Sign up

Export Citation Format

Share Document