scholarly journals Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames

2012 ◽  
Vol 29 (22) ◽  
pp. 224002 ◽  
Author(s):  
Gerardo Adesso ◽  
Sammy Ragy ◽  
Davide Girolami
2005 ◽  
Vol 12 (02) ◽  
pp. 189-205 ◽  
Author(s):  
Gerardo Adesso ◽  
Alessio Serafini ◽  
Fabrizio Illuminati

Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal (i.e. referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or, in general, by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two-mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1 × N-mode partitions.


2013 ◽  
Vol 87 (4) ◽  
Author(s):  
Shuntaro Takeda ◽  
Takahiro Mizuta ◽  
Maria Fuwa ◽  
Jun-ichi Yoshikawa ◽  
Hidehiro Yonezawa ◽  
...  

Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Eduardo Martín-Martínez ◽  
T. Rick Perche ◽  
Bruno de S. L. Torres

2011 ◽  
Vol 09 (03) ◽  
pp. 981-991 ◽  
Author(s):  
LAURA MAZZOLA ◽  
JYRKI PIILO ◽  
SABRINA MANISCALCO

We investigate the dynamics of quantum and classical correlations in a system of two qubits under local colored-noise dephasing channels. The time evolution of a single qubit interacting with its own environment is described by a memory kernel non-Markovian master equation. The memory effects of the non-Markovian reservoirs introduce new features in the dynamics of quantum and classical correlations compared to the white noise Markovian case. Depending on the geometry of the initial state, the system can exhibit frozen discord and multiple sudden transitions between classical and quantum decoherence [L. Mazzola, J. Piilo and S. Maniscalco, Phys. Rev. Lett. 104 (2010) 200401]. We provide a geometric interpretation of those phenomena in terms of the distance of the state under investigation to its closest classical state in the Hilbert space of the system.


Nanophotonics ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Genta Masada ◽  
Akira Furusawa

AbstractEntanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Wu-zhong Guo

Abstract In this paper we explore the correlations in the geometric states. Here the geometric state means the state in CFTs that can be effectively described by classical geometry in the bulk in the semi-classical limit G → 0. By using the upper bound of Holevo information we show the convex combination of geometric states cannot be a geometric state. To understand the duality between thermofield double state and eternal black hle, we construct several correlated states of two CFTs. In all the examples we show their correlations are too weak to produce the a connected spacetime. Then we review the measure named quantum discord and use it to characterize the classical and quantum correlations in quantum field theories. Finally, we discuss the correlations between two intervals A and B with distance d in the vacuum state of 2D CFTs with large central charge c. The feature is the phase transition of the mutual information I (ρAB). We analyse the quasi-product state of ρAB for large d. By using the Koashi-Winter relation of tripartite states the quantum and classical correlations between A and B can expressed as Holevo information, which provides a new understanding of the correlations as accessible information.


Sign in / Sign up

Export Citation Format

Share Document