scholarly journals Globular cluster formation in the context of galaxy formation and evolution

2014 ◽  
Vol 31 (24) ◽  
pp. 244006 ◽  
Author(s):  
J M Diederik Kruijssen
2006 ◽  
Vol 2 (S237) ◽  
pp. 230-237 ◽  
Author(s):  
Pavel Kroupa

AbstractStar clusters are observed to form in a highly compact state and with low star-formation efficiencies, and only 10 per cent of all clusters appear to survive to middle- and old-dynamical age. If the residual gas is expelled on a dynamical time the clusters disrupt. Massive clusters may then feed a hot kinematical stellar component into their host-galaxy's field population thereby thickening galactic disks, a process that theories of galaxy formation and evolution need to accommodate. If the gas-evacuation time-scale depends on cluster mass, then a power-law embedded-cluster mass function may transform within a few dozen Myr to a mass function with a turnover near 105M, thereby possibly explaining this universal empirical feature. Discordant empirical evidence on the mass function of star clusters leads to the insight that the physical processes shaping early cluster evolution remain an issue of cutting-edge research.


2005 ◽  
Vol 13 ◽  
pp. 347-349
Author(s):  
Stephen E. Zepf

AbstractThis paper addresses the questions of what we have learned about how and when dense star clusters form, and what studies of star clusters have revealed about galaxy formation and evolution. One important observation is that globular clusters are observed to form in galaxy mergers and starbursts in the local universe, which both provides constraints on models of globular cluster formation, and suggests that similar physical conditions existed when most early-type galaxies and their globular clusters formed in the past. A second important observation is that globular cluster systems typically have bimodal color distributions. This was predicted by merger models, and indicates an episodic formation history for elliptical galaxies. A third and very recent result is the discovery of large populations of intermediate age globular clusters in several elliptical galaxies through the use of optical to near-infrared colors. These provide an important link between young cluster systems observed in starbursts and mergers and old cluster systems. This continuum of ages of the metal-rich globular cluster systems also indicates that there is no special age or epoch for the formation of the metal-rich globular clusters, which comprise about half of the cluster population. The paper concludes with a brief discussion of recent results on the globular cluster – low-mass X-ray binary connection.


2002 ◽  
Vol 207 ◽  
pp. 294-300 ◽  
Author(s):  
Thomas H. Puzia ◽  
Markus Kissler-Patig ◽  
Jean Brodie ◽  
Paul Goudfrooij ◽  
Michael Hilker ◽  
...  

Extragalactic Globular Clusters are useful tracers of galaxy formation and evolution. Photometric studies of globular cluster systems beyond the Local Group are still the most popular method to investigate their physical properties, such as their ages and metallicities. However, the limitations of optical photometry are well known. The better wavelength sampling of the underlying cluster's SED using K-band photometry combined with optical passbands allows us to create colors which reduce the age-metallicity degeneracy to the largest extent. Here we report on the very first results of our near-IR photometric survey of globular cluster systems in early-type galaxies outside the Local Group.


2002 ◽  
Vol 207 ◽  
pp. 207-217
Author(s):  
Markus Kissler-Patig

A brief review on globular cluster sub-populations in galaxies, and their constraints on galaxy formation and evolution is given. The metal-poor and metal-rich sub-populations are put in a historical context, and their properties, as known to date, are summarized. We review why the study of these sub-populations is extremely useful for the study of galaxy formation and evolution, but highlight a few caveats with the current interpretations. We re-visit the current globular cluster system formation scenarios and show how they boil down to a single scenario for the metal-poor clusters (namely the formation in “universal”, small fragments at high z) and that a hierarchical formation seems favored for the metal-rich clusters.


2009 ◽  
Vol 5 (S267) ◽  
pp. 464-464
Author(s):  
J. A. Vázquez-Mata ◽  
H. M. Hernández-Toledo ◽  
Changbom Park ◽  
Yun-Young Choi

We present a new catalog of isolated galaxies (coined as UNAM–KIAS) obtained through an automated systematic search. The 1520 isolated galaxies were found in ~ 1.4 steradians of the sky in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) photometry. The selection algorithm was implemented from a variation of the criteria developed by Karachentseva (1973), with full redshift information. This new catalog is aimed to carry out comparative studies of environmental effects and constraining the currently competing scenarios of galaxy formation and evolution.


2013 ◽  
Vol 9 (S304) ◽  
pp. 419-420
Author(s):  
Gabriel A. Ohanian

AbstractKey questions, which arise when one tries to clear up a problem of formation and evolution of galaxies, is the question of energy: what is the energetic budget of AGN owing to form galaxies and provide its subsequent development? Hence, for understanding the formation and evolution of galaxies, it is important to estimate the energetic budget of AGN which we try to do involving radio loud phase of nuclear activity.


2006 ◽  
Vol 2 (S235) ◽  
pp. 300-300
Author(s):  
R.O. Amorín ◽  
J.A.L. Aguerri ◽  
L.M. Cairós ◽  
N. Caon ◽  
C. Muñoz-Tuñón

AbstractBlue compact dwarf (BCD) galaxies are gas-rich, low-luminosity (Mb≳-18 mag) and compact systems, currently undergoing violent star-formation burst (Sargent & Searle 1970). While it was initially hypothesized that they were very young galaxies (e.g. Sargent & Searle 1970, et al. 1988), the subsecuent detection of an extended, redder stellar host galaxy showed that the vast majority of them are old systems (e.g. Gil de Paz et al. 2003,2005). BCDs play an important role for understanding the process of galaxy formation and evolution.The structural properties of the low surface brightness stellar host in BCDs are often studied by fitting r1/n models to the outer regions of their radial profiles. The limitations imposed by the presence of a large starburst emission overlapping the underlying component makes this kind of analysis a difficult task.We propose a two-dimensional fitting methodology in order to improve the extraction of the structural parameters of the LSB host Amorín et al. 2006, submitted). A set of ideal simulations are presented in order to test the reliability of the method and to determine its robustness and flexibility. We present the different steps of the method discussing its advantages and weaknesses. We compare the results for a sample of eight objects with those already obtained using a one-dimensional technique (Caon et al. 2005).We fit a PSF convolved Sérsic model to the BVR images with the GALFIT publicly software (Peng et al. 2002). We restrict the fit to the stellar host by masking out the starburst region and take special care to minimize the sky-subtraction uncertainties. Consistency checks are performed to assess the reliability and accuracy of the derived structural parameters.We obtain robust fits for all the sample galaxies, all of which, except one, show low Sérsic indices n—very close to 1—with good agreement in the three bands. These findings suggest that the stellar hosts in BCDs have near-exponential profiles. Since the Sérsic index n of host galaxies is important in the context of the possible structural and evolutionary connections among the different types of dwarf galaxies, we are currently extending the study to a larger sample of objects. This kind of studies will help us to understand the mechanisms that form and shape BCD galaxies, and how they relate to the other dwarf galaxy classes.


Sign in / Sign up

Export Citation Format

Share Document