Spherically symmetric spacetimes in the context of the compacted spin coefficient formalism

1989 ◽  
Vol 6 (5) ◽  
pp. 697-704 ◽  
Author(s):  
C Kolassis ◽  
R Chan
2013 ◽  
Vol 52 (10) ◽  
pp. 3534-3542 ◽  
Author(s):  
Ashfaque H. Bokhari ◽  
A. G. Johnpillai ◽  
A. H. Kara ◽  
F. M. Mahomed ◽  
F. D. Zaman

2006 ◽  
Vol 21 (29) ◽  
pp. 2241-2250 ◽  
Author(s):  
GAMAL G. L. NASHED

We give three different spherically symmetric spacetimes for the coupled gravitational and electromagnetic fields with charged source in the tetrad theory of gravitation. One of these contains an arbitrary function and generates the others. These spacetimes give the Reissner–Nordström metric black hole. We then calculated the energy associated with these spacetimes using the superpotential method. We find that unless the time-space components of the tetrad field go to zero faster than [Formula: see text] at infinity, one gets different results for the energy.


2009 ◽  
Vol 24 (19) ◽  
pp. 1533-1542 ◽  
Author(s):  
M. SHARIF ◽  
KHADIJA IQBAL

In this paper, we discuss gravitational collapse of spherically symmetric spacetimes. We derive a general formalism by taking two arbitrary spherically symmetric spacetimes with g00 = 1. Israel's junction conditions are used to develop this formalism. The formulas for extrinsic curvature tensor are obtained. The general form of the surface energy–momentum tensor depending on extrinsic curvature tensor components is derived. This leads us to the surface energy density and the tangential pressure. The formalism is applied to two known spherically symmetric spacetimes. The results obtained show the regions for the collapse and expansion of the shell.


Sign in / Sign up

Export Citation Format

Share Document