spherically symmetric spacetimes
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Antonio C. Gutierrez-Pineres ◽  
Hernando Quevedo

Abstract We apply the Darmois and the $C^3$ matching conditions to three different spherically symmetric spacetimes. The exterior spacetime is described by the Schwarzschild vacuum solution whereas for the interior counterpart we choose different perfect fluid solutions with the same symmetry. We show that Darmois matching conditions are satisfied in all the three cases whereas the $C^3$ conditions are not fulfilled. We argue that this difference is due to a non-physical behavior of the pressure on the matching surface.


2021 ◽  
pp. 136588
Author(s):  
Duo Li ◽  
Bin Wu ◽  
Zhen-Ming Xu ◽  
Wen-Li Yang

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Li-Ming Cao ◽  
Yong Song

AbstractBased on the geometry of the codimension-2 surface in general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one provided by Claudel, Virbhadra, and Ellis but without referencing any umbilical hypersurface in the spacetime. The new definition effectively excludes the photon surface in spacetime without gravity. The application of the definition to the Lemaître–Tolman–Bondi (LTB) model of gravitational collapse reduces to a second order differential equation problem. We find that the energy balance on the boundary of the dust ball can provide one of the appropriate boundary conditions to this equation. Based on this crucial investigation, we find an analytic photon surface solution in the Oppenheimer–Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of the gravitational field of the system.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2032
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We present a comparative analysis of the self-gravitating solitons that arise in the Einstein–Klein–Gordon, Einstein–Dirac, and Einstein–Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous study by Herdeiro, Pombo and Radu in 2017, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for the existence of Q-ball-type solutions for these models in the flat spacetime limit. In spite of this important difference, our analysis shows that the high degree of universality that was observed by Herdeiro, Pombo and Radu remains, and various spin-independent common patterns are observed.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050238
Author(s):  
Suhail Khan ◽  
Muhammad Shoaib Khan ◽  
Amjad Ali

In this paper, the spherically symmetric gravitational collapse of anisotropic fluid in the presence of charge in metric [Formula: see text] theory is analyzed. We consider the static and non static spherically symmetric spacetimes for outer and inner regions of collapsing object respectively. For the smooth matching of inner and outer regions, the Senovilla as well as Darmois matching conditions are utilized. The closed form solutions are obtained from field equations. Moreover, we examine the apparent horizons and their physical significance. The effect of cosmological constant and [Formula: see text] term is same and the collapsing rate speeds up as compared to that of anisotropic fluid case when the electromagnetic field is introduced. Electromagnetic charge also affects the time interval of singularities and cosmological horizons.


Sign in / Sign up

Export Citation Format

Share Document