scholarly journals SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE

2009 ◽  
Vol 24 (19) ◽  
pp. 1533-1542 ◽  
Author(s):  
M. SHARIF ◽  
KHADIJA IQBAL

In this paper, we discuss gravitational collapse of spherically symmetric spacetimes. We derive a general formalism by taking two arbitrary spherically symmetric spacetimes with g00 = 1. Israel's junction conditions are used to develop this formalism. The formulas for extrinsic curvature tensor are obtained. The general form of the surface energy–momentum tensor depending on extrinsic curvature tensor components is derived. This leads us to the surface energy density and the tangential pressure. The formalism is applied to two known spherically symmetric spacetimes. The results obtained show the regions for the collapse and expansion of the shell.

2019 ◽  
Vol 16 (12) ◽  
pp. 1950194
Author(s):  
M. Tahir ◽  
G. Abbas

This paper deals with spherically symmetric gravitational collapse of inhomogeneous perfect fluid in Einstein Gauss–Bonnet gravity. The physical quantities have been plotted in the EGB gravity. The Ricci Scalar and Kretschmann scalar have been determined to study the curvature singularity. The shell focusing curvature singularities are generated at last stage of gravitational collapse of object. The formation of singularity and apparent horizon depends on the initial data. Also, the energy conditions have been discussed for the reasonable energy momentum tensor. The presence of GB coupling constant [Formula: see text] modifies the structure of singularity and formation of apparent horizon.


2013 ◽  
Vol 52 (10) ◽  
pp. 3534-3542 ◽  
Author(s):  
Ashfaque H. Bokhari ◽  
A. G. Johnpillai ◽  
A. H. Kara ◽  
F. M. Mahomed ◽  
F. D. Zaman

Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040004
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper formulates the exact static anisotropic spherically symmetric solution of the field equations through gravitational decoupling. To accomplish this work, we add a new gravitational source in the energy–momentum tensor of a perfect fluid. The corresponding field equations, hydrostatic equilibrium equation as well as matching conditions are evaluated. We obtain the anisotropic model by extending the known Durgapal and Gehlot isotropic solution and examined the physical viability as well as the stability of the developed model. It is found that the system exhibits viable behavior for all fluid variables as well as energy conditions and the stability criterion is fulfilled.


Sign in / Sign up

Export Citation Format

Share Document