A one-dimensional inverse problem for a hyperbolic system with complex coefficients

2001 ◽  
Vol 17 (5) ◽  
pp. 1401-1417 ◽  
Author(s):  
Rakesh
2011 ◽  
Vol 354 (4) ◽  
pp. 1431-1464
Author(s):  
Katsiaryna Krupchyk ◽  
Matti Lassas

Author(s):  
Vu Tuan

AbstractWe prove that by taking suitable initial distributions only finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of a one dimensional fractional diffusion equation. If a lower bound on the diffusion coefficient is known a priori then even only two measurements are sufficient. The technique is based on possibility of extracting the full boundary spectral data from special lateral measurements.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
J. D. Audu ◽  
A. Boumenir ◽  
K. M. Furati ◽  
I. O. Sarumi

<p style='text-indent:20px;'>In this paper we examine the identification problem of the heat sink for a one dimensional heat equation through observations of the solution at the boundary or through a desired temperature profile to be attained at a certain given time. We make use of pseudo-spectral methods to recast the direct as well as the inverse problem in terms of linear systems in matrix form. The resulting evolution equations in finite dimensional spaces leads to fast real time algorithms which are crucial to applied control theory.</p>


2019 ◽  
Vol 27 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Ammar Khanfer ◽  
Alexander Bukhgeim

AbstractWe prove a global uniqueness theorem of reconstruction of a matrix-potential {a(x,t)} of one-dimensional wave equation {\square u+au=0}, {x>0,t>0}, {\square=\partial_{t}^{2}-\partial_{x}^{2}} with zero Cauchy data for {t=0} and given Cauchy data for {x=0}, {u(0,t)=0}, {u_{x}(0,t)=g(t)}. Here {u,a,f}, and g are {n\times n} smooth real matrices, {\det(f(0))\neq 0}, and the matrix {\partial_{t}a} is known.


Sign in / Sign up

Export Citation Format

Share Document