scholarly journals Initial-boundary-value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations

2008 ◽  
Vol 24 (6) ◽  
pp. 065011 ◽  
Author(s):  
Gino Biondini ◽  
Guenbo Hwang
2011 ◽  
Vol 152 (3) ◽  
pp. 473-496 ◽  
Author(s):  
DAVID A. SMITH

AbstractWe study initial-boundary value problems for linear evolution equations of arbitrary spatial order, subject to arbitrary linear boundary conditions and posed on a rectangular 1-space, 1-time domain. We give a new characterisation of the boundary conditions that specify well-posed problems using Fokas' transform method. We also give a sufficient condition guaranteeing that the solution can be represented using a series.The relevant condition, the analyticity at infinity of certain meromorphic functions within particular sectors, is significantly more concrete and easier to test than the previous criterion, based on the existence of admissible functions.


2007 ◽  
Vol 143 (1) ◽  
pp. 221-242 ◽  
Author(s):  
P. A. TREHARNE ◽  
A. S. FOKAS

AbstractA new approach for studying initial-boundary value problems for linear partial differential equations (PDEs) with variable coefficients was introduced recently by the second author, and was applied to PDEs involving second order derivatives. Here, we extend this approach further to solve an initial-boundary value problem for a third-order evolution PDE with a space-dependent coefficient. The analysis is presented in such a way that it can be applied to PDEs with higher derivatives, and thus provides a method for solving initial-boundary value problems for a certain class of linear evolution equations with variable coefficients of arbitrary order.


2011 ◽  
Vol 18 (3) ◽  
pp. 441-463
Author(s):  
Gia Avalishvili ◽  
Mariam Avalishvili

Abstract The present paper deals with nonclassical initial-boundary value problems for parabolic equations and systems and their generalizations in abstract spaces. Nonclassical problems with nonlocal initial conditions for an abstract first-order evolution equation with time-dependent operator are considered, the existence and uniqueness results are proved and the algorithm of approximation of nonlocal problems by a sequence of classical problems is constructed. Applications of the obtained general results to initial-boundary value problems for parabolic equations and systems are considered.


Sign in / Sign up

Export Citation Format

Share Document