Numerical inversion of the Funk transform on the rotation group

2013 ◽  
Vol 29 (12) ◽  
pp. 125014 ◽  
Author(s):  
Ralf Hielscher
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3635
Author(s):  
Wei-W. Xing ◽  
Ming Cheng ◽  
Kaiming Cheng ◽  
Wei Zhang ◽  
Peng Wang

Composition-dependent interdiffusion coefficients are key parameters in many physical processes. However, finding such coefficients for a system with few components is challenging due to the underdetermination of the governing diffusion equations, the lack of data in practice, and the unknown parametric form of the interdiffusion coefficients. In this work, we propose InfPolyn, Infinite Polynomial, a novel statistical framework to characterize the component-dependent interdiffusion coefficients. Our model is a generalization of the commonly used polynomial fitting method with extended model capacity and flexibility and it is combined with the numerical inversion-based Boltzmann–Matano method for the interdiffusion coefficient estimations. We assess InfPolyn on ternary and quaternary systems with predefined polynomial, exponential, and sinusoidal interdiffusion coefficients. The experiments show that InfPolyn outperforms the competitors, the SOTA numerical inversion-based Boltzmann–Matano methods, with a large margin in terms of relative error (10x more accurate). Its performance is also consistent and stable, whereas the number of samples required remains small.


Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
J. Toutain ◽  
J.-L. Battaglia ◽  
C. Pradere ◽  
J. Pailhes ◽  
A. Kusiak ◽  
...  

The aim of this technical brief is to test numerical inverse Laplace transform methods with application in the framework of the thermal characterization experiment. The objective is to find the most reliable technique in the case of a time resolved experiment based on a thermal disturbance in the form of a periodic function or a distribution. The reliability of methods based on the Fourier series methods is demonstrated.


2018 ◽  
Vol 14 (1) ◽  
pp. 2-15 ◽  
Author(s):  
Jitesh Tripathi ◽  
Shrikant Warbhe ◽  
K.C. Deshmukh ◽  
Jyoti Verma

Purpose The present work is concerned with the solution of a fractional-order thermoelastic problem of a two-dimensional infinite half space under axisymmetric distributions in which lower surface is traction free and subjected to a periodically varying heat source. The thermoelastic displacement, stresses and temperature are determined within the context of fractional-order thermoelastic theory. To observe the variations of displacement, temperature and stress inside the half space, the authors compute the numerical values of the field variables for copper material by utilizing Gaver-Stehfast algorithm for numerical inversion of Laplace transform. The effects of fractional-order parameter on the variations of field variables inside the medium are analyzed graphically. The paper aims to discuss these issues. Design/methodology/approach Integral transform technique and Gaver-Stehfast algorithm are applied to prepare the mathematical model by considering the periodically varying heat source in cylindrical co-ordinates. Findings This paper studies a problem on thermoelastic interactions in an isotropic and homogeneous elastic medium under fractional-order theory of thermoelasticity proposed by Sherief (Ezzat and El-Karamany, 2011b). The analytic solutions are found in Laplace transform domain. Gaver-Stehfast algorithm (Ezzat and El-Karamany, 2011d; Ezzat, 2012; Ezzat, El Karamany, Ezzat, 2012) is used for numerical inversion of the Laplace transform. All the integrals were evaluated using Romberg’s integration technique (El-Karamany et al., 2011) with variable step size. A mathematical model is prepared for copper material and the results are presented graphically with the discussion on the effects of fractional-order parameter. Research limitations/implications Constructed purely on theoretical mathematical model by considering different parameters and the functions. Practical implications The system of equations in this paper may prove to be useful in studying the thermal characteristics of various bodies in real-life engineering problems by considering the time fractional derivative in the field equations. Originality/value In this problem, the authors have used the time fractional-order theory of thermoelasticity to solve the problem for a half space with a periodically varying heat source to control the speed of wave propagation in terms of heat and elastic waves for different conductivity like weak conductivity, moderate conductivity and super conductivity which is a new and novel contribution.


Sign in / Sign up

Export Citation Format

Share Document