Experimental tests of quantum mechanics versus local hidden variable theories

1978 ◽  
Vol 11 (8) ◽  
pp. L167-L171 ◽  
Author(s):  
S M Roy ◽  
Virendra Singh
2006 ◽  
Vol 84 (6-7) ◽  
pp. 633-638 ◽  
Author(s):  
A A Méthot

The strongest attack against quantum mechanics came in 1935 in the form of a paper by Einstein, Podolsky, and Rosen. It was argued that the theory of quantum mechanics could not be called a complete theory of Nature, for every element of reality is not represented in the formalism as such. The authors then put forth a proposition: we must search for a theory where, upon knowing everything about the system, including possible hidden variables, one could make precise predictions concerning elements of reality. This project was ultimately doomed in 1964 with the work of Bell, who showed that the most general local hidden variable theory could not reproduce correlations that arise in quantum mechanics. There exist mainly three forms of no-go theorems for local hidden variable theories. Although almost every physicist knows the consequences of these no-go theorems, not every physicist is aware of the distinctions between the three or even their exact definitions. Thus, we will discuss here the three principal forms of no-go theorems for local hidden variable theories of Nature. We will define Bell theorems, Bell theorems without inequalities, and pseudo-telepathy. A discussion of the similarities and differences will follow. PACS Nos.: 03.65.–w, 03.65.Ud, 03.65.Ta


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 185 ◽  
Author(s):  
Yeong-Cherng Liang ◽  
Yanbao Zhang

The device-independent approach to physics is one where conclusions about physical systems (and hence of Nature) are drawn directly and solely from the observed correlations between measurement outcomes. This operational approach to physics arose as a byproduct of Bell’s seminal work to distinguish, via a Bell test, quantum correlations from the set of correlations allowed by local-hidden-variable theories. In practice, since one can only perform a finite number of experimental trials, deciding whether an empirical observation is compatible with some class of physical theories will have to be carried out via the task of hypothesis testing. In this paper, we show that the prediction-based-ratio method—initially developed for performing a hypothesis test of local-hidden-variable theories—can equally well be applied to test many other classes of physical theories, such as those constrained only by the nonsignaling principle, and those that are constrained to produce any of the outer approximation to the quantum set of correlations due to Navascués-Pironio-Acín. We numerically simulate Bell tests using hypothetical nonlocal sources of correlations to illustrate the applicability of the method in both the independent and identically distributed (i.i.d.) scenario and the non-i.i.d. scenario. As a further application, we demonstrate how this method allows us to unveil an apparent violation of the nonsignaling conditions in certain experimental data collected in a Bell test. This, in turn, highlights the importance of the randomization of measurement settings, as well as a consistency check of the nonsignaling conditions in a Bell test.


2009 ◽  
Vol 07 (supp01) ◽  
pp. 237-243
Author(s):  
ADÁN CABELLO

We describe a method for obtaining m-partite Bell inequalities that are maximally violated by n-qubit states by an amount that grows exponentially with n (n > m). These inequalities, derived for states with perfect correlations, are, however, valid for all local hidden variable theories.


1972 ◽  
Vol 28 (14) ◽  
pp. 938-941 ◽  
Author(s):  
Stuart J. Freedman ◽  
John F. Clauser

2007 ◽  
Vol 67 ◽  
pp. 012047 ◽  
Author(s):  
Marco Genovese ◽  
Giorgio Brida ◽  
Marco Gramegna ◽  
Fabrizio Piacentini ◽  
Enrico Predazzi ◽  
...  

Author(s):  
David Wallace

This chapter surveys various proposals to interpret—that is, make sense of—quantum mechanics. We could attempt to think of quantum mechanics in purely instrumentalist terms, as an algorithm to predict observed experimental results. But this fits badly with scientific practice and is probably not viable. We could attempt to modify quantum mechanics itself to resolve the paradoxes, and there are some simple models that attempt to do that: some are ‘hidden-variable’ theories that add extra properties to the theory, some are ‘dynamical-collapse’ theories that modify the theory’s equations. But none of these models succeed in reproducing quantum theory’s predictions outside a relatively narrow range of applications. Or we could try to take the apparent indefiniteness of quantum mechanics literally, and interpret it as a theory of many parallel worlds. The correct interpretation of quantum mechanics remains controversial, but the search for understanding and interpretation of the theory has led to very substantial scientific results and is likely to lead to more.


Sign in / Sign up

Export Citation Format

Share Document