A Bethe ansatz solution for the closed Temperley - Lieb quantum spin chains

1998 ◽  
Vol 31 (2) ◽  
pp. 505-512 ◽  
Author(s):  
A Lima-Santos ◽  
R C T Ghiotto
2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Aleksandra A. Ziolkowska ◽  
Fabian Essler

We consider Lindblad equations for one dimensional fermionic models and quantum spin chains. By employing a (graded) super-operator formalism we identify a number of Lindblad equations than can be mapped onto non-Hermitian interacting Yang-Baxter integrable models. Employing Bethe Ansatz techniques we show that the late-time dynamics of some of these models is diffusive.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Rafael I. Nepomechie ◽  
Ana L. Retore

Abstract We investigate the effect of introducing a boundary inhomogeneity in the transfer matrix of an integrable open quantum spin chain. We find that it is possible to construct a local Hamiltonian, and to have quantum group symmetry. The boundary inhomogeneity has a profound effect on the Bethe ansatz solution.


2000 ◽  
Vol 15 (21) ◽  
pp. 3395-3425 ◽  
Author(s):  
R. C. T. GHIOTTO ◽  
A. L. MALVEZZI

We solve the spectrum of quantum spin chains based on representations of the Temperley–Lieb algebra associated with the quantum groups [Formula: see text] for Xn=A1, Bn, Cn and Dn. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, break quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Nikolai Kitanine ◽  
Giridhar V. Kulkarni

In this paper we propose a method based on the algebraic Bethe ansatz leading to explicit results for the form factors of quantum spin chains in the thermodynamic limit. Starting from the determinant representations we retrieve in particular the formula for the two-spinon form factors for the isotropic XXX Heisenberg chain obtained initially in the framework of the q-vertex operator approach.


1994 ◽  
Vol 4 (8) ◽  
pp. 1151-1159 ◽  
Author(s):  
Makoto Idzumi ◽  
Tetsuji Tokihiro ◽  
Masao Arai

Sign in / Sign up

Export Citation Format

Share Document