free boundary conditions
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 1)

Algorithms ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 18
Author(s):  
Farrukh Mukhamedov

In this paper, we consider the λ-model for an arbitrary-order Cayley tree that has a disordered phase. Such a phase corresponds to a splitting Gibbs measure with free boundary conditions. In communication theory, such a measure appears naturally, and its extremality is related to the solvability of the non-reconstruction problem. In general, the disordered phase is not extreme; hence, it is natural to find a condition for their extremality. In the present paper, we present certain conditions for the extremality of the disordered phase of the λ-model.


Algorithms ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Mikhail Alexandrovich Padalko ◽  
Yuriy Andreevich Shevchenko ◽  
Vitalii Yurievich Kapitan ◽  
Konstantin Valentinovich Nefedev

A scheme for parallel computation of the two-dimensional Edwards—Anderson model based on the transfer matrix approach is proposed. Free boundary conditions are considered. The method may find application in calculations related to spin glasses and in quantum simulators. Performance data are given. The scheme of parallelisation for various numbers of threads is tested. Application to a quantum computer simulator is considered in detail. In particular, a parallelisation scheme of work of quantum computer simulator.


2021 ◽  
Vol 21 (2) ◽  
pp. 234-246
Author(s):  
M.A. Padalko ◽  
◽  
Yu.A. Shevchenko ◽  
◽  
◽  
...  

An algorithm for parallel exact calculation of the ground state of a two-dimensional Edwards–Anderson model with free boundary conditions is given. The running time of the algorithm grows exponentially as the side of the lattice square increases. If one side of the lattice is fixed, the running time grows polynomially with increasing size of the other side. The method may find application in the theory of spin glasses, in the field of quantum computing. Performance data for the bimodal distribution is given. The distribution of spin bonds can be either bimodal or Gaussian. The method makes it possible to compute systems up to a size of 40x40.


2021 ◽  
Vol 54 (40) ◽  
pp. 405401
Author(s):  
Olindo Corradini ◽  
Antonino Flachi ◽  
Giacomo Marmorini ◽  
Maurizio Muratori ◽  
Vincenzo Vitagliano

2021 ◽  
Vol 263 (3) ◽  
pp. 3424-3435
Author(s):  
Shaan Sanjeev ◽  
Dan J. O'Boy ◽  
Paul Cunningham ◽  
Steve Fisher

Experimental tests are carried out on automotive bolted joints to study the influence of the bolt size on the source of damping during dynamic loading. Aluminium beams and five different bolt sizes are chosen and used to assemble single-lap joints under strictly controlled experiments. Measurements are taken to estimate the energy loss during forced excitation and to identify the source of damping in jointed structures, and an analogous monolithic solid beam is also used during the experimental investigation to isolate the joint effects and compare the data gathered. The dynamic response of the jointed structure exposed to forced excitation is captured under free-free boundary conditions. The motion of the assembled structure is identified by carrying out a finite element analysis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shawn W. Walker

Abstract We establish several useful estimates for a non-conforming 2-norm posed on piecewise linear surface triangulations with boundary, with the main result being a Poincaré inequality. We also obtain equivalence of the non-conforming 2-norm posed on the true surface with the norm posed on a piecewise linear approximation. Moreover, we allow for free boundary conditions. The true surface is assumed to be C 2 , 1 C^{2,1} when free conditions are present; otherwise, C 2 C^{2} is sufficient. The framework uses tools from differential geometry and the closest point map (see [G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155]) for approximating the full surface Hessian operator. We also present a novel way of applying the closest point map when dealing with surfaces with boundary. Connections with surface finite element methods for fourth-order problems are also noted.


2021 ◽  
Vol 94 (3) ◽  
Author(s):  
W. Quapp ◽  
J. M. Bofill

Abstract We explain Shapiro steps in a Frenkel–Kontorova (FK) model for a 1D chain of particles with free boundaries. The action of an external alternating force for the oscillating structure of the chain is important here. The different ’floors’ of the potential energy surface (PES) of this model play an important role. They are regions of kinks, double kinks, and so on. We will find out that the preferable movements are the sliding of kinks or antikinks through the chain. The more kinks / antikinks are included the higher is the ’floor’ through the PES. We find the Shapiro steps moving and oscillating anywhere between the floors. They start with a single jump over the highest SP in the global valley through the PES, like in part I of this series. They finish with complicated oscillations in the PES, for excitations directly over the critical depinning force. We use an FK model with free boundary conditions. In contrast to other results in the past, for this model, we obtain Shapiro steps in an unexpected, inverse sequence. We demonstrate Shapiro steps for a case with soft ’springs’ between an 8-particle FK chain. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document