Rotational symmetry breaking for spiral waves

Nonlinearity ◽  
2002 ◽  
Vol 15 (4) ◽  
pp. 1179-1203 ◽  
Author(s):  
Victor G LeBlanc
2018 ◽  
Vol 98 (24) ◽  
Author(s):  
J. Choi ◽  
O. Ivashko ◽  
N. Dennler ◽  
D. Aoki ◽  
K. von Arx ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1312 ◽  
Author(s):  
Artem Oliinyk ◽  
Igor Yatsuta ◽  
Boris Malomed ◽  
Alexander Yakimenko

We demonstrate that the evolution of superflows in interacting persistent currents of ultracold gases is strongly affected by symmetry breaking of the quantum vortex dynamics. We study counter-propagating superflows in a system of two parallel rings in regimes of weak (a Josephson junction with tunneling through the barrier) and strong (rings merging across a reduced barrier) interactions. For the weakly interacting toroidal Bose–Einstein condensates, formation of rotational fluxons (Josephson vortices) is associated with spontaneous breaking of the rotational symmetry of the tunneling superflows. The influence of a controllable symmetry breaking on the final state of the merging counter-propagating superflows is investigated in the framework of a weakly dissipative mean-field model. It is demonstrated that the population imbalance between the merging flows and the breaking of the underlying rotational symmetry can drive the double-ring system to final states with different angular momenta.


1999 ◽  
Vol 09 (11) ◽  
pp. 2243-2247 ◽  
Author(s):  
ANDREI GORYACHEV ◽  
RAYMOND KAPRAL

The structure of spiral waves is investigated in super-excitable reaction–diffusion systems where the local dynamics exhibits multilooped phase-space trajectories. It is shown that such systems support stable spiral waves with broken rotational symmetry and complex temporal dynamics. The main structural features of such waves, synchronization defect lines, are demonstrated to be similar to those of spiral waves in systems with complex-oscillatory dynamics.


2009 ◽  
Vol 18 (04) ◽  
pp. 1014-1021
Author(s):  
R. G. NAZMITDINOV ◽  
A. PUENTE

A brief description of excited and ground states in two-dimensional quantum dots and rotating nuclei is presented within a mean field approach and a random-phase approximation (RPA). We discuss the procedure to restore the rotational symmetry broken at the mean field, which can be extended for other symmetry breaking cases. We propose to consider a disappearance of collective excitations in the rotating frame as a manifestation of symmetry breaking phenomena of the rotating mean field. In particular, we demonstrate that the disappearance of a collective octupole mode in the rotating frame in 162 Yb gives rise to the nonaxial octupole deformation.


Sign in / Sign up

Export Citation Format

Share Document