cuprate superconductors
Recently Published Documents


TOTAL DOCUMENTS

1726
(FIVE YEARS 152)

H-INDEX

76
(FIVE YEARS 9)

Author(s):  
HAI LIN ◽  
Dariusz Jakub Gawryluk ◽  
Yannick Maximilian Klein ◽  
Shangxiong Huangfu ◽  
Ekaterina Pomjakushina ◽  
...  

Abstract Motivated by the recent discovery of superconductivity in infinite-layer nickelate thin films, we report on a synthesis and magnetization study on bulk samples of the parent compounds RNiO2 (R=La, Pr, Nd). The frequency-dependent peaks of the AC magnetic susceptibility, along with remarkable memory effects, characterize spin-glass states. Furthermore, various phenomenological parameters via different spin glass models show strong similarity within these three compounds as well as with other rare-earth metal nickelates. The universal spin-glass behaviour distinguishes the nickelates from the parent compound CaCuO2 of cuprate superconductors, which has the same crystal structure and d9 electronic configuration but undergoes a long-range antiferromagnetic order. Our investigations may indicate a distinctly different nature of magnetism and superconductivity in the bulk nickelates than in the cuprates.


2021 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Victor Velasco ◽  
Marcello B. Silva Neto ◽  
Andrea Perali ◽  
Sandro Wimberger ◽  
Alan R. Bishop ◽  
...  

Because of its sensitivity to the instantaneous structure factor, S(Q,t = 0), Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for probing the dynamic structure of condensed matter systems in which the charge and lattice dynamics are coupled. When applied to hole-doped cuprate superconductors, EXAFS has revealed the presence of internal quantum tunneling polarons (IQTPs). An IQTP arises in EXAFS as a two-site distribution for certain Cu–O pairs, which is also duplicated in inelastic scattering but not observed in standard diffraction measurements. The Cu–Sr pair distribution has been found to be highly anharmonic and strongly correlated to both the IQTPs and to superconductivity, as, for example, in YSr2Cu2.75Mo0.25O7.54(Tc=84 K). In order to describe such nontrivial, anharmonic charge-lattice dynamics, we have proposed a model Hamiltonian for a prototype six-atom cluster, in which two Cu-apical-O IQTPs are charge-transfer bridged through Cu atoms by an O atom in the CuO2 plane and are anharmonically coupled via a Sr atom. By applying an exact diagonalization procedure to this cluster, we have verified that our model indeed produces an intricate interplay between charge and lattice dynamics. Then, by using the Kuramoto model for the synchronization of coupled quantum oscillators, we have found a first-order phase transition for the IQTPs into a synchronized, phase-locked phase. Most importantly, we have shown that this transition results specifically from the anharmonicity. Finally, we have provided a phase diagram showing the onset of the phase-locking of IQTPs as a function of the charge-lattice and anharmonic couplings in our model. We have found that the charge, initially confined to the apical oxygens, is partially pumped into the CuO2 plane in the synchronized phase, which suggests a possible connection between the synchronized dynamic structure and high-temperature superconductivity (HTSC) in doped cuprates.


2021 ◽  
Vol 118 (51) ◽  
pp. e2115317118
Author(s):  
Siyuan Wan ◽  
Huazhou Li ◽  
Peayush Choubey ◽  
Qiangqiang Gu ◽  
Han Li ◽  
...  

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.


2021 ◽  
Vol 90 (11) ◽  
pp. 111005
Author(s):  
Riccardo Arpaia ◽  
Giacomo Ghiringhelli

Sign in / Sign up

Export Citation Format

Share Document