scholarly journals Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

Nonlinearity ◽  
2011 ◽  
Vol 24 (8) ◽  
pp. 2281-2323 ◽  
Author(s):  
Vincent Duchêne
2020 ◽  
Vol 117 (29) ◽  
pp. 16770-16775
Author(s):  
Johan Fourdrinoy ◽  
Julien Dambrine ◽  
Madalina Petcu ◽  
Morgan Pierre ◽  
Germain Rousseaux

A ship encounters a higher drag in a stratified fluid compared to a homogeneous one. Grouped under the same “dead-water” vocabulary, two wave-making resistance phenomena have been historically reported. The first, the Nansen wave-making drag, generates a stationary internal wake which produces a kinematic drag with a noticeable hysteresis. The second, the Ekman wave-making drag, is characterized by velocity oscillations caused by a dynamical resistance whose origin is still unclear. The latter has been justified previously by a periodic emission of nonlinear internal waves. Here we show that these speed variations are due to the generation of an internal dispersive undulating depression produced during the initial acceleration of the ship within a linear regime. The dispersive undulating depression front and its subsequent whelps act as a bumpy treadmill on which the ship would move back and forth. We provide an analytical description of the coupled dynamics of the ship and the wave, which demonstrates the unsteady motion of the ship. Thanks to dynamic calculations substantiated by laboratory experiments, we prove that this oscillating regime is only temporary: the ship will escape the transient Ekman regime while maintaining its propulsion force, reaching the asymptotic Nansen limit. In addition, we show that the lateral confinement, often imposed by experimental setups or in harbors and locks, exacerbates oscillations and modifies the asymptotic speed.


2011 ◽  
Vol 18 (2) ◽  
pp. 193-208 ◽  
Author(s):  
M. J. Mercier ◽  
R. Vasseur ◽  
T. Dauxois

Abstract. We revisit experimental studies performed by Ekman on dead-water (Ekman, 1904) using modern techniques in order to present new insights on this peculiar phenomenon. We extend its description to more general situations such as a three-layer fluid or a linearly stratified fluid in presence of a pycnocline, showing the robustness of dead-water phenomenon. We observe large amplitude nonlinear internal waves which are coupled to the boat dynamics, and we emphasize that the modeling of the wave-induced drag requires more analysis, taking into account nonlinear effects. Dedicated to Fridtjöf Nansen born 150 yr ago (10 October 1861).


2019 ◽  
Vol 64 (5) ◽  
pp. 1864-1882 ◽  
Author(s):  
Ali Arnon ◽  
Steve Brenner ◽  
John S. Selker ◽  
Isaac Gertman ◽  
Nadav G. Lensky

2013 ◽  
Vol 24 (01) ◽  
pp. 1-65 ◽  
Author(s):  
VINCENT DUCHÊNE

We study the relevance of various scalar equations, such as inviscid Burgers', Korteweg–de Vries (KdV), extended KdV, and higher order equations, as asymptotic models for the propagation of internal waves in a two-fluid system. These scalar evolution equations may be justified in two ways. The first method consists in approximating the flow by two uncoupled, counterpropagating waves, each one satisfying such an equation. One also recovers these equations when focusing on a given direction of propagation, and seeking unidirectional approximate solutions. This second justification is more restrictive as for the admissible initial data, but yields greater accuracy. Additionally, we present several new coupled asymptotic models: a Green–Naghdi type model, its simplified version in the so-called Camassa–Holm regime, and a weakly decoupled model. All of the models are rigorously justified in the sense of consistency.


2018 ◽  
Vol 854 ◽  
pp. 121-145 ◽  
Author(s):  
S. Das ◽  
T. Sahoo ◽  
M. H. Meylan

Flexural-gravity wave characteristics are analysed, in the presence of a compressive force and a two-layer fluid, under the assumption of linearized water wave theory and small amplitude structural response. The occurrence of blocking for flexural-gravity waves is demonstrated in both the surface and internal modes. Within the threshold of the blocking and the buckling limit, the dispersion relation possesses four positive roots (for fixed wavenumber). It is shown that, under certain conditions, the phase and group velocities coalesce. Moreover, a wavenumber range for certain critical values of compression and depth is provided within which the internal wave energy moves faster than that of the surface wave. It is also demonstrated that, for shallow water, the wave frequencies in the surface and internal modes will never coalesce. It is established that the phase speed in the surface and internal modes attains a minimum and maximum, respectively, when the interface is located approximately in the middle of the water depth. An analogue of the dead water phenomenon, the occurrence of a high amplitude internal wave with a low amplitude at the surface, is established, irrespective of water depth, when the densities of the two fluids are close to each other. When the interface becomes close to the seabed, the dead water effect ceases to exist. The theory developed in the frequency domain is extended to the time domain and examples of negative energy waves and blocking are presented.


2020 ◽  
Author(s):  
Karim Medjdoub ◽  
Imre M. Jánosi ◽  
Miklós Vincze

<p> ‘Dead water’ phenomenon, which is essentially a ship-wave in a stratified fluid is studied experimentally in a laboratory tank. Interfacial waves are excited by a moving ship model in a quasi-two-layer fluid, which leads to the development of a drag force that reaches the maximum at the largest wave amplitude in a critical ‘resonant’ towing speed, whose value depends on the structure of the vertical density profile. We utilize five ships of different lengths but of the same width and wet depth. The experimental analysis focuses on the variability of the interfacial wave amplitudes and wavelengths as a function of towing speed in different stratifications. Data evaluation is based on linear two- and three-layer theories of freely propagating interfacial waves and lee waves. We observe that although the internal waves have considerable amplitude, linear theory still gives a surprisingly adequate description of subcritical to supercritical transition and the associated amplification of internal waves.</p>


Sign in / Sign up

Export Citation Format

Share Document