scholarly journals Asymptotics of the tacnode process: a transition between the gap probabilities from the tacnode to the Airy process

Nonlinearity ◽  
2014 ◽  
Vol 27 (8) ◽  
pp. 1937-1968 ◽  
Author(s):  
Manuela Girotti
Author(s):  
Elliot Blackstone ◽  
Christophe Charlier ◽  
Jonatan Lenells

We consider the probability that no points lie on [Formula: see text] large intervals in the bulk of the Airy point process. We make a conjecture for all the terms in the asymptotics up to and including the oscillations of order [Formula: see text], and we prove this conjecture for [Formula: see text].


2019 ◽  
Vol 2020 (24) ◽  
pp. 9797-9843 ◽  
Author(s):  
Anton Dzhamay ◽  
Alisa Knizel

Abstract The goal of this paper is to investigate the missing part of the story about the relationship between the orthogonal polynomial ensembles and Painlevé equations. Namely, we consider the $q$-Racah polynomial ensemble and show that the one-interval gap probabilities in this case can be expressed through a solution of the discrete $q$-P$\left (E_7^{(1)}/A_{1}^{(1)}\right )$ equation. Our approach also gives a new Lax pair for this equation. This Lax pair has an interesting additional involutive symmetry structure.


Author(s):  
Greg W. Anderson

This article describes a direct approach for computing scalar and matrix kernels, respectively for the unitary ensembles on the one hand and the orthogonal and symplectic ensembles on the other hand, leading to correlation functions and gap probabilities. In the classical orthogonal polynomials (Hermite, Laguerre, and Jacobi), the matrix kernels for the orthogonal and symplectic ensemble are expressed in terms of the scalar kernel for the unitary case, using the relation between the classical orthogonal polynomials going with the unitary ensembles and the skew-orthogonal polynomials going with the orthogonal and symplectic ensembles. The article states the fundamental theorem relating the orthonormal and skew-orthonormal polynomials that enter into the Christoffel-Darboux kernels


2011 ◽  
Vol 16 (0) ◽  
pp. 1048-1064 ◽  
Author(s):  
Mark Adler ◽  
Mattia Cafasso ◽  
Pierre van Moerbeke
Keyword(s):  

Author(s):  
Alexander R. Its

This article discusses the interaction between random matrix theory (RMT) and integrable theory, leading to ordinary and partial differential equations (PDEs) for the eigenvalue distribution of random matrix models of size n and the transition probabilities of non-intersecting Brownian motion models, for finite n and for n → ∞. It first provides an overview of the connection between the theory of orthogonal polynomials and the KP-hierarchy in integrable systems before examining matrix models and the Virasoro constraints. It then considers multiple orthogonal polynomials, taking into account non-intersecting Brownian motions on ℝ (Dyson’s Brownian motions), a moment matrix for several weights, Virasoro constraints, and a PDE for non-intersecting Brownian motions. It also analyses critical diffusions, with particular emphasis on the Airy process, the Pearcey process, and Airy process with wanderers. Finally, it describes the Tacnode process, along with kernels and p-reduced KP-hierarchy.


2020 ◽  
Vol 12 (21) ◽  
pp. 3600
Author(s):  
Xu Ma ◽  
Yong Liu

The canopy reflectance model is the physical basis of remote sensing inversion. In canopy reflectance modeling, the geometric optical (GO) approach is the most commonly used. However, it ignores the description of a multiple-scattering contribution, which causes an underestimation of the reflectance. Although researchers have tried to add a multiple-scattering contribution to the GO approach for forest modeling, different from forests, row crops have unique geometric characteristics. Therefore, the modeling approach originally applied to forests cannot be directly applied to row crops. In this study, we introduced the adding method and mathematical solution of integral radiative transfer equation into row modeling, and on the basis of improving the overlapping relationship of the gap probabilities involved in the single-scattering contribution, we derived multiple-scattering equations suitable for the GO approach. Based on these modifications, we established a row model that can accurately describe the single-scattering and multiple-scattering contributions in row crops. We validated the row model using computer simulations and in situ measurements and found that it can be used to simulate crop canopy reflectance at different growth stages. Moreover, the row model can be successfully used to simulate the distribution of reflectances (RMSEs < 0.0404). During computer validation, the row model also maintained high accuracy (RMSEs < 0.0062). Our results demonstrate that considering multiple scattering in GO-approach-based modeling can successfully address the underestimation of reflectance in the row crops.


Sign in / Sign up

Export Citation Format

Share Document