The influence of thermal disturbance duration on the stability of superconducting windings with extremely large heat capacity dopants

2008 ◽  
Vol 21 (2) ◽  
pp. 025018 ◽  
Author(s):  
V E Keilin ◽  
I A Kovalev ◽  
S L Kruglov ◽  
D I Shutova
Cryogenics ◽  
2011 ◽  
Vol 51 (7) ◽  
pp. 359-365 ◽  
Author(s):  
V.E. Keilin ◽  
I.A. Kovalev ◽  
S.L. Kruglov ◽  
A.K. Shikov ◽  
D.I. Shutova ◽  
...  

ChemInform ◽  
2013 ◽  
Vol 44 (2) ◽  
pp. no-no
Author(s):  
V. E. Keilin ◽  
I. A. Kovalev ◽  
S. L. Kruglov ◽  
A. K. Shikov ◽  
D. I. Shutova ◽  
...  

2010 ◽  
Vol 55 (10) ◽  
pp. 1459-1462 ◽  
Author(s):  
V. E. Keilin ◽  
I. A. Kovalev ◽  
S. L. Kruglov ◽  
A. K. Shikov ◽  
D. I. Shutova ◽  
...  

1986 ◽  
Vol 166 (-1) ◽  
pp. 57 ◽  
Author(s):  
Philip A. Thompson ◽  
Garry C. Carofano ◽  
Yoon-Gon Kim

2010 ◽  
Vol 55 (2) ◽  
pp. 312-315 ◽  
Author(s):  
V. E. Keilin ◽  
I. A. Kovalev ◽  
S. L. Kruglov ◽  
D. I. Shutova ◽  
V. I. Scherbakov

2011 ◽  
Vol 26 (07) ◽  
pp. 515-529 ◽  
Author(s):  
DECHENG ZOU ◽  
ZHANYING YANG ◽  
RUIHONG YUE ◽  
PENG LI

We construct solutions of a model which includes the Gauss–Bonnet and Born–Infeld terms for various horizon topologies (k = 0, ±1), and then the mass, temperature, entropy, and heat capacity of black holes are computed. For the sake of simplicity, we perform the stability analysis of five-dimensional topological black holes in AdS space.


2008 ◽  
Vol 34 (5) ◽  
pp. 418-420 ◽  
Author(s):  
V. E. Keilin ◽  
I. A. Kovalev ◽  
S. L. Kruglov ◽  
D. É. Lupanov ◽  
V. I. Shcherbakov

2012 ◽  
Vol 550-553 ◽  
pp. 2814-2818 ◽  
Author(s):  
Yu Rong Wu ◽  
Wang Yu Hu ◽  
Long Shan Xu

The thermodynamic and thermo-elastic properties of ductile intermetallic compounds YAg with B2 structure are investigate with molecular dynamics. The thermodynamic properties at various temperatures, such as lattice parameter, cohesive energy, enthalpy of formation, heat capacity, vibrational entropy and vibrational free energy are computed. The present calculated results show good agreements with available experimental and previous calculated data. At high temperature, the heat capacity tends to a constant with obeys the classical equipartition law. At 300K, the heat capacity of YAg is 23.91 J mol-1 K-1. And those data enrich thermodynamic data-base for YAg. At the whole range 0-600K, the elastic constants follow a normal behavior with temperature that those decrease with increasing temperature, and satisfy the stability conditions for YAg compound. The Cauchy pressure and B/G for YAg increase with elevating temperature. Our results mean that increasing temperature may improve ductility of YAg.


Sign in / Sign up

Export Citation Format

Share Document