mass temperature
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
pp. 117348
Author(s):  
Zhengyu Chen ◽  
Dong Guan ◽  
Xiaojie Zhang ◽  
Ying Zhang ◽  
Suoqi Zhao ◽  
...  

2021 ◽  
Author(s):  
Sebastián A. Pardo ◽  
Nicholas K. Dulvy

AbstractAn important challenge in ecology is to understand variation in species’ maximum intrinsic rate of population increase,rmax, not least becausermaxunderpins our understanding of the limits of fishing, recovery potential, and ultimately extinction risk. Across many vertebrates, terrestrial and aquatic, body mass and environmental temperature across important correlatesrmaxacross species. In sharks and rays, specifically,rmaxis known be lower in larger species, but also in deep-sea ones. We use an information-theoretic approach that accounts for phylogenetic relatedness to evaluate the relative importance of body mass, temperature and depth onrmax. We show that both temperature and depth have separate effects on shark and rayrmaxestimates, such that species living in deeper waters have lowerrmax. Furthermore, temperature also correlates with changes in the mass scaling coefficient, suggesting that as body size increases, decreases inrmaxare much steeper for species in warmer waters. These findings suggest that there (as-yet understood) depth-related processes that limit the maximum rate at which populations can grow in deep sea sharks and rays. While the deep ocean is associated with colder temperatures, other factors that are independent of temperature, such as food availability and physiological constraints, may influence the lowrmaxobserved in deep sea sharks and rays. Our study lays the foundation for predicting the intrinsic limit of fishing, recovery potential, and extinction risk species based on easily accessible environmental information such as temperature and depth, particularly for data-poor species.


Author(s):  
Zhengyu Chen ◽  
Dong Guan ◽  
Xiaojie Zhang ◽  
Ying Zhang ◽  
Suoqi Zhao ◽  
...  

The molecular conversion of complex mixture involves a large number of species and reactions. The corresponding kinetic model is consist of a series of ordinary differential equations (ODEs) with severe stiffness, leading to an exponentially growing computational time. To reduce the computational time, we proposed a mass-temperature decoupled discretization strategy for a large-scale molecular-level kinetic model. The method separates the mass balance and heat balance calculations in the rigorous adiabatic reactor model and divided the reactor into several isothermal segments. After discretization, the differential equations for heat balance can be replaced by algebraic equations between nodes. We used a molecular-level diesel hydrotreating kinetic model as the case to validate the proposed method. We investigated the effects of temperature estimation methods and node number on the accuracy of the model. A good agreement between the discretization model and rigorous model was observed while the computational time was significantly shortened


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 380
Author(s):  
Martin Traintinger ◽  
Roman Christopher Kerschbaumer ◽  
Bernhard Lechner ◽  
Walter Friesenbichler ◽  
Thomas Lucyshyn

Injection molding of rubber compounds is an easily conducted yet sophisticated method for rubber processing. Simulation software is used to examine the optimal process conditions, identify failure scenarios, and save resources. Due to the complexity of the entire process, various aspects have to be considered in the numerical approach. This contribution focused on a comparison of process simulations with various definitions of the material’s inlet temperature, ranging from a stepwise increase, but constant temperature, to an exact axial mass temperature profile prior to injection. The latter was obtained with a specially designed, unique test stand consisting of a plasticizing cylinder equipped with pressure sensors, a throttle valve for pressure adjustments, and a measurement bar with thermocouples for the determination of the actual state of the mass temperature. For the verification of the theoretical calculations, practical experiments were conducted on a rubber injection molding machine equipped with the mold used in the simulation. The moldings, obtained at different vulcanization time, were characterized mechanically and the results were normalized to a relative degree of cure in order to enable comparison of the real process and the simulation. Considering the actual state of the mass temperature, the simulation showed an excellent correlation of the measured and calculated mass temperatures in the cold runner. Additionally, the relative degree of cure was closer to reality when the mass temperature profile after dosing was applied in the simulation.


2020 ◽  
Vol 497 (1) ◽  
pp. 1256-1262
Author(s):  
Haonan Liu ◽  
Andrew C Fabian ◽  
Ciro Pinto

ABSTRACT We present a mass–temperature profile of gas within the central 10 kpc of a small sample of cool core clusters. The mass of the hottest gas phases, at 1.5 and 0.7 keV, is determined from X-ray spectra from the XMM Reflection Grating Spectrometers. The masses of the partially ionized atomic and the molecular phases are obtained from published H α and CO measurements. We find that the mass of gas at 0.7 keV in a cluster is remarkably similar to that of the molecular gas. Assuming pressure equilibrium between the phases, this means that they occupy volumes differing by 105. The molecular gas is located within the H α nebula which is often filamentary and coincides radially and in position angle with the soft X-ray emitting gas.


2020 ◽  
Author(s):  
◽  
Christopher Dawson

In levitated optomechanics, nano-scale objects are optically trapped so that their motion can be studied. These trapped nanoparticles are held in a 3D quadratic potential and act as damped harmonic oscillators; they are thermally and mechanically decoupled from the apparatus and their position is measured interfer-ometrically to picometre accuracy. These systems are well suited to sensing and metrology applications, as any external disturbance of the particle can be observed using the scattered trapping light.When examining the motion of a levitated nanoparticle, it’s position is recorded and used to estimate a power spectral density (PSD), from which state parameters can be estimated. In this thesis an experi-mental setup is presented, optimised for maximum collection of particle position information in 1D, using a fibre-based parabolic mirror trap and heterodyne measurement system in order to produce spectra with minimal noise and unwanted artefacts.A novel application of the Middleton expansion from RF engineering is used to generate a complete power spectrum that depends on the physical parameters of the system. This method treats the particle as a stochastic harmonic oscillator, phase modulated by a Gaussian random process with known PSD. We reproduce the PSD of intensity at a detector, a quantity that is sinusoidally dependent on particle posi-tion. This technique generates a single, full PSD using modified Bessel functions, and does not depend on assumptions about the relative phases of the interfered fields, highlighting the non-linear dependence of measured signal on position. Theoretical spectra are fitted to a measured PSD and the phase modulation depth is extracted; this is used to calculate the particle oscillation amplitude and, by an equipartition ar-gument, the centre of mass temperature to mass ratio. State parameters are tracked as environmental conditions change and an increase in centre of mass temperature as a function of decreasing background gas pressure is observed.


Author(s):  
Mehmet Bozca ◽  

This study investigates the effective parameters of scuffing failure in gears using the integral temperature method. For this aim, the mass temperature, integral temperature and scuffing safety factor are calculated for a given parameters. Then, integral temperatures are simulated based on various geometrical, operational and lubrication parameters. Obtained results are presented graphically. The obtained results show that increasing the module mn results in a decrease in the integral temperature ϑint. Similarly, increasing the pinion teeth number zp results in a decrease in the integral temperature ϑint. Increasing the module and tooth number positively affects the scuffing failure in gears. In contrast, increasing the transmitted torque MT1T results in an increase in the integral temperature ϑint. Similarly, increasing the pinion speed np increases the mass temperature ϑM, and increasing the lubricant (oil) ϑÖ temperature increases the integral temperature ϑint. Increasing the transmitted torque, lubricant temperature and the pinion speed negatively affects the scuffing failure in gears. Finally, increasing the nominal kinematic viscosity v40 decreases the integral temperature ϑint. Increasing the nominal kinematic viscosity positively affects the scuffing failure in gears. By considering the effective parameters of scuffing failure such as geometrical, operational and lubrication, one can design and manufacture the desired gears without scuffing failure.


Sign in / Sign up

Export Citation Format

Share Document