Creation of an arbitrary coherent superposition state with chirped delayed pulses

2010 ◽  
Vol 43 (3) ◽  
pp. 035401 ◽  
Author(s):  
Deng Li ◽  
Niu Yueping ◽  
Xiang yang ◽  
Jin Shiqi ◽  
Gong Shangqing
2020 ◽  
Vol 30 (2) ◽  
pp. 99
Author(s):  
Ngoc-Loan Phan

Atom in a coherent superposition state reveals an advantage in the enhancement conversion efficiency of high-order harmonic generation (HHG), which is meaningful in producing attosecond pulses. In this study, we expand to investigate a more complicated system, H\(_2^+\) molecule in the superposition of the ground and second excited states, exposed to an ultrashort intense laser pulse by numerically solving the time-dependent Schrödinger equation. Firstly, we examine the enhancement of HHG from this system. Then, we study the depletion effect on the cutoff energy of HHG spectra with the coherent superposition state. We found that these effects on the HHG from molecules are similar to those from atoms. Finally, we study the signature of the interesting effect, which is absent for atoms -- two-center interference effect in the HHG from H\(_2^+\) in the coherent superposition state. We recognize that the minimum positions in HHG from molecules in the superposition state, and in the pure ground state are the same. Especially, for weak laser intensity, in the HHG with the superposition state, the minimum due to the interference effect is apparent, while it is invisible in the HHG from pure ground state. As a result, in comparison with the ground-state molecule, the coherent molecule can be used as a more accurate tool to determine the internuclear distance of molecule.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 1097-1106 ◽  
Author(s):  
A.-S. F. OBADA ◽  
H. A. HESSIAN

We investigate the influence of superposition of coherent states of light on population inversion and the evolution of the field entropy for two-level atoms in the framework of the Jaynes–Cummings model. We compare the behavior of the system in the case of having a coherent superposition state and a statistical mixture of coherent states as an initial field. Our results show that the superposition of coherent states plays an important role in the evolution of the field entropy in the intensity-dependent Jaynes–Cummings model (JCM).


2007 ◽  
Vol 24 (3) ◽  
pp. 683-686 ◽  
Author(s):  
Zhou Zhao-Yan ◽  
Yuan Jian-Min

Sign in / Sign up

Export Citation Format

Share Document