A full three-dimensional characterization of defocusing digital particle image velocimetry

2005 ◽  
Vol 16 (3) ◽  
pp. 790-804 ◽  
Author(s):  
L Kajitani ◽  
D Dabiri
1999 ◽  
Vol 202 (18) ◽  
pp. 2393-2412 ◽  
Author(s):  
E.G. Drucker ◽  
G.V. Lauder

Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(−)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(−)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(−)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(−)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of swimming fishes and is therefore a valuable means of studying unsteady flows produced by animals moving through fluids.


2002 ◽  
Vol 205 (21) ◽  
pp. 3271-3279 ◽  
Author(s):  
Jennifer C. Nauen ◽  
George V. Lauder

SUMMARYAlthough considerable progress has been made within the last decade in experimental hydrodynamic analyses of aquatic locomotion using two-dimensional digital particle image velocimetry (two-dimensional DPIV), data have been limited to simultaneous calculation of two out of the three flow velocity variables: downstream (U), vertical (V) and lateral(W). Here, we present the first biological application of stereo-DPIV, an engineering technique that allows simultaneous calculation of U, V and W velocity vectors. We quantified the wakes of rainbow trout (Oncorhynchus mykiss, 16.5-21.5 cm total body length, BL), swimming steadily in a recirculating flow tank at a slow cruising speed of 1.2 BL s-1. These data extend the comparative basis of current hydromechanical data on the wakes of free-swimming fishes to the salmoniforms and are used to test current hypotheses of fin function by calculations of mechanical performance and Froude efficiency.Stereo-DPIV wake images showed three-dimensional views of oscillating jet flows high in velocity relative to free-stream values. These jet flows are consistent with the central momentum jet flows through the cores of shed vortex rings that have been previously viewed for caudal fin swimmers using two-dimensional DPIV. The magnitude and direction of U, V and W flows in these jets were determined over a time series of 6-8 consecutive strokes by each of four fish.Although the fish swam at the same relative speed, the absolute magnitudes of U, V and W were dependent on individual because of body size variation. Vertical flows were small in magnitude (<1 cm s-1) and variable in direction, indicating limited and variable vertical force production during slow, steady, forward swimming. Thus, in contrast to previous data from sunfish (Lepomis macrochirus) and mackerel (Scomber japonicus), the trout homocercal caudal fin does not appear to generate consistent vertical forces during steady swimming. U flows were of the order of 3-6 cm s-1; lateral flows were typically strongest, with W magnitudes of 4-6 cm s-1. Such strong lateral flows have also been shown for more derived euteleosts with homocercal caudal fins.The ratios of the magnitudes of wake flow, U/(U+V+W), which is a flow equivalent to mechanical performance, were also dependent on individual and ranged from 0.32 to 0.45, a range similar to the range of mechanical performance values previously determined using standard two-dimensional DPIV methods for caudal fin locomotion by more derived euteleosts. Strong lateral jet flow appears to be a general feature of caudal fin locomotion by teleosts and may reflect the nature of undulatory propulsion as a posteriorly propagated wave of bending. Froude efficiency (ηp) was independent of individual; meanη p was 0.74, which is similar to previous findings for trout.


Author(s):  
Gillian Leplat ◽  
Philippe Barricau ◽  
Philippe Reulet ◽  
Pierre Millan

Consider an air-filled square cavity with cold top and bottom walls, adiabatic side walls and a centered heated sharp-edged source (a square-section cylinder). An unstable behavior has been highlighted previously while studying the effects of confinement (with different cylinder sizes) on the topology of the flow. A transition occurs from a bi-dimensional, steady regime to a three-dimensional, unsteady regime when the aspect ratio reaches the value of 0.4 for a Rayleigh number of 5.74 × 104. Time-resolved 2D particle image velocimetry is used to characterize the dynamics of the flow in this configuration. The evolution of the instability is particularly investigated.


Sign in / Sign up

Export Citation Format

Share Document