lepomis macrochirus
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 43)

H-INDEX

55
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michael J. Lawrence ◽  
Phil Grayson ◽  
Jennifer D. Jeffrey ◽  
Margaret F. Docker ◽  
Colin J Garroway ◽  
...  

Pesticides are critical for invasive species management, but often have negative effects on non-target native biota. Tolerance to pesticides should have an evolutionary basis, but this is poorly understood. Invasive sea lamprey (Petromyzon marinus) populations in North America have been controlled with a pesticide lethal to them at lower concentrations than native fishes. We addressed how interspecific variation in gene expression and detoxification gene diversity confer differential pesticide sensitivity in two fish species. We exposed sea lamprey and bluegill (Lepomis macrochirus), a tolerant native species, to TFM, a pesticide commonly used in sea lamprey control, and used whole-transcriptome sequencing of gill and liver to characterize the cellular response. Comparatively, bluegill exhibited a larger number of detoxification genes expressed and a larger number of responsive transcripts overall, which likely contributes to greater tolerance to TFM. Understanding the genetic and physiological basis for pesticide tolerance is crucial for managing invasive species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yordano E. Jimenez ◽  
Richard L. Marsh ◽  
Elizabeth L. Brainerd

AbstractThe axial musculature of fishes has historically been characterized as the powerhouse for explosive swimming behaviors. However, recent studies show that some fish also use their ‘swimming’ muscles to generate over 90% of the power for suction feeding. Can the axial musculature achieve high power output for these two mechanically distinct behaviors? Muscle power output is enhanced when all of the fibers within a muscle shorten at optimal velocity. Yet, axial locomotion produces a mediolateral gradient of muscle strain that should force some fibers to shorten too slowly and others too fast. This mechanical problem prompted research into the gearing of fish axial muscle and led to the discovery of helical fiber orientations that homogenize fiber velocities during swimming, but does such a strain gradient also exist and pose a problem for suction feeding? We measured muscle strain in bluegill sunfish, Lepomis macrochirus, and found that suction feeding produces a gradient of longitudinal strain that, unlike the mediolateral gradient for locomotion, occurs along the dorsoventral axis. A dorsoventral strain gradient within a muscle with fiber architecture shown to counteract a mediolateral gradient suggests that bluegill sunfish should not be able to generate high power outputs from the axial muscle during suction feeding—yet prior work shows that they do, up to 438 W kg−1. Solving this biomechanical paradox may be critical to understanding how many fishes have co-opted ‘swimming’ muscles into a suction feeding powerhouse.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 393
Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim

Frequent predation induces various defense strategies in prey, including morphological changes or migration patterns in zooplankton. We hypothesized that the winter dominance of Cyclops vicinus in the Upo Wetlands, South Korea, is an evolved temporal defense mechanism to avoid fish predation. Long-term data (2014–2019) showed that fish consumed the most cyclopoid copepods from spring to autumn. Lepomis macrochirus preferentially consumed C. vicinus; thus, C. vicinus density was lower from spring to autumn. However, C. vicinus was abundant in winter when fish consumed fewer copepods. Nauplii density began to increase in late autumn (October–November), and their population growth was fueled through consumption of Cyclotella sp. and Rhodomonas sp. Culture experiments showed that Cyclotella sp. contributed more to the growth stage (copepodite or subadult) after nauplii than Rhodomonas sp. C. vicinus density was lower in the winters of 2013 and 2016 when the densities of these phytoplankton prey species were lower. In summary, although winter conditions were suitable for copepod survival and population growth, C. vicinus relied heavily on the diversity and species composition of its food sources. The winter dominance of C. vicinus could increase regional biodiversity and contribute significantly to the stability of the freshwater food web.


2021 ◽  
Vol 13 (5) ◽  
pp. 2486
Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim

Empirical studies suggest that changes in the density of top predators, such as carnivorous fish, in freshwater food webs, strongly affect not only fish communities but also various primary and secondary consumers. Based on these findings, we explored how differences in the utilization of carnivorous fish (i.e., Northern Snakehead, Channa argus) by humans affected the fish and cladoceran community structure as well as the settlement of exotic fish species (i.e., Lepomis macrochirus and Micropterus salmoides) in 30 wetlands located in the upper and lower reaches of the Nakdong River. Our results show that in the mid–lower reaches of the Nakdong River, the density of C. argus was low, while high densities of L. macrochirus and M. salmoides were observed. Exotic fish species are frequently consumed by C. argus, leading to a low density of L. macrochirus and M. salmoides in the upper reaches, which supported a high density of C. argus. However, in the mid–lower reaches, the density of L. macrochirus was high because of the frequent collection of C. argus by fishing activities. The dominance of L. macrochirus significantly changed the structure of cladoceran communities. L. macrochirus mainly feeds on pelagic species, increasing the density of epiphytic species in the mid–lower reaches. The continued utilization of C. argus by humans induced a stable settlement of exotic fish species and strongly affected the community structures of primary consumers in the 30 wetlands. The frequency of C. argus collection has to be reduced to secure biodiversity in the mid–lower reaches of the Nakdong River, which will reduce the proportion of exotic fish species and increase the conservation of native fish.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohammed Mahjoub ◽  
Soufiane Fadlaoui ◽  
Mohammed El Maadoudi ◽  
Youssef Smiri

This study aims to assess the degree of metal contamination (mercury (Hg), cadmium (Cd), and lead (Pb)) in the muscles of five species of fish Esox lucius, Sander lucioperca, Micropterus salmoides, Lepomis macrochirus, and Scardinius erythrophthalmus, from the Mechraâ-Hammadi Dam between July 2017 and May 2018, and to conduct a risk assessment for human consumers. Trace metals were determined by Graphite Furnace Atomic Absorption Spectrometry for the Pb and the Cd and by Cold Vapor Atomic Absorption Spectrometry for the Hg. The results gotten from the study of the muscles of the different fish species show that the higher mean amounts of Cd and Hg were determined in E. lucius, and the maximum mean levels of Pb were detected in S. erythrophthalmus. Results suggested that demersal fishes inhabiting near the sediments and piscivorous fishes with higher trophic level were likely to accumulate higher trace metal concentrations. The general order of bioaccumulation of the trace metals measured in the muscles of the fish species is as follows: Hg > Pb > Cd. Therefore, the bioaccumulation of Hg in fish studied is more important than that of Cd and Pb. Furthermore, these concentrations are higher in summer than in winter for all trace metals. All the values of the trace metals in the muscle tissues are below the maximum limits recommended by the European Community (EC) N° 1881/2006. However, estimation of noncarcinogenic health risks by the target hazard quotient indicated no obvious noncarcinogenic risks to humans that consume those fishes (THQ < 1). Results of THQ and maximum safe consumption indicated that Hg may cause more harm to human by fish consumption especially for E. lucius and S. lucioperca. Therefore, reduced intake of carnivorous fishes should be promoted as part of a healthier diet.


Sign in / Sign up

Export Citation Format

Share Document