scholarly journals Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction

2009 ◽  
Vol 20 (7) ◽  
pp. 074003 ◽  
Author(s):  
L J Souverein ◽  
B W van Oudheusden ◽  
F Scarano ◽  
P Dupont
AIAA Journal ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Axel Hartmann ◽  
P. Christian Steimle ◽  
Michael Klaas ◽  
Wolfgang Schröder

2009 ◽  
Vol 629 ◽  
pp. 87-108 ◽  
Author(s):  
S. PIPONNIAU ◽  
J. P. DUSSAUGE ◽  
J. F. DEBIÈVE ◽  
P. DUPONT

A model to explain the low-frequency unsteadiness found in shock-induced separation is proposed for cases in which the flow is reattaching downstream. It is based on the properties of fluid entrainment in the mixing layer generated downstream of the separation shock whose low-frequency motions are related to successive contractions and dilatations of the separated bubble. The main aerodynamic parameters on which the process depends are presented. This model is consistent with experimental observations obtained by particle image velocimetry (PIV) in a Mach 2.3 oblique shock wave/turbulent boundary layer interaction, as well as with several different configurations reported in the literature for Mach numbers ranging from 0 to 5.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


2002 ◽  
Vol 467 ◽  
pp. 41-56 ◽  
Author(s):  
GAETANO MARIA DI CICCA ◽  
GAETANO IUSO ◽  
PIER GIORGIO SPAZZINI ◽  
MICHELE ONORATO

Particle image velocimetry has been applied to the study of a canonical turbulent boundary layer and to a turbulent boundary layer forced by transversal wall oscillations. This work is part of the research programme at the Politecnico di Torino aerodynamic laboratory with the objective of investigating the response of near-wall turbulence to external perturbations. Results are presented for the optimum oscillation period of 100 viscous time units and for an oscillation amplitude of 320 viscous units. As expected, turbulent velocity fluctuations are considerably reduced by the wall oscillations. Particle image velocimetry has allowed comparisons between the canonical and forced flows in an attempt to find the physical mechanisms by which the wall oscillation influences the near-wall organized motions.


Sign in / Sign up

Export Citation Format

Share Document