Electrostatic micro power generation from low-frequency vibration such as human motion

2009 ◽  
Vol 19 (9) ◽  
pp. 094002 ◽  
Author(s):  
Y Naruse ◽  
N Matsubara ◽  
K Mabuchi ◽  
M Izumi ◽  
S Suzuki
Author(s):  
Aya Watanabe ◽  
Ryousuke Yuyama ◽  
Hiroshi Hosaka ◽  
Akira Yamashita

Abstract This paper describes a friction-driven gyro generator that works under arbitrary vibrations and generates more than 1 W of power. Vibrational generators are energy harvesters that convert environmental vibrations into electrical power via the inertial force of pendulums. In conventional generators that use simple vibration, the power is less than 10 mW for a wearable size because vibrations in the natural environment are as low as 1 Hz. Gyroscopic generators increase the inertial force by rotating a pendulum at high speed and creating a gyro effect. In this generator, a palm-size product that generates 0.1 W and weighs 280 g has already been commercialized, but this device operates only under a particular vibration that synchronizes rotor precession and stalls under random vibration. To solve this problem, in this research, two gimbals and a precession spring are introduced to support the rotor. We developed a prototype generator with straight tracks measuring 16 cm × 11 cm × 12 cm with a mass of 980 g. Under a vibration of 4 Hz and ±20 degrees, power generation of 1.6 W was confirmed. Next, a prototype circular track was made. Power generation of 0.2 W with a vibration of 1 Hz and ±90 degrees was confirmed. Finally, a simple formula to estimate the upper limit of the generation power is derived. It is suggested that the circular-type generator is suitable for low-frequency vibration and can generate twice the power of a straight-type generator.


2012 ◽  
Vol 236-237 ◽  
pp. 1368-1372
Author(s):  
Su Xiang Qian ◽  
Hong Sheng Hu ◽  
Li Xia Ge ◽  
Jia You Song

Papers on cantilever piezoelectric resonators experiment research in the low frequency vibration environment. The study proved that, to choose a proper mass can effectively regulate the cantilever piezoelectric vibrators natural frequency The more close to the incentive frequency and the natural frequency of piezoelectric vibrators, the better the results of piezoelectric vibrators power generation.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Sign in / Sign up

Export Citation Format

Share Document