The Experiments of Cantilever Piezoelectric Vibrator Power Generation

2012 ◽  
Vol 236-237 ◽  
pp. 1368-1372
Author(s):  
Su Xiang Qian ◽  
Hong Sheng Hu ◽  
Li Xia Ge ◽  
Jia You Song

Papers on cantilever piezoelectric resonators experiment research in the low frequency vibration environment. The study proved that, to choose a proper mass can effectively regulate the cantilever piezoelectric vibrators natural frequency The more close to the incentive frequency and the natural frequency of piezoelectric vibrators, the better the results of piezoelectric vibrators power generation.

2009 ◽  
Vol 19 (9) ◽  
pp. 094002 ◽  
Author(s):  
Y Naruse ◽  
N Matsubara ◽  
K Mabuchi ◽  
M Izumi ◽  
S Suzuki

Author(s):  
Aya Watanabe ◽  
Ryousuke Yuyama ◽  
Hiroshi Hosaka ◽  
Akira Yamashita

Abstract This paper describes a friction-driven gyro generator that works under arbitrary vibrations and generates more than 1 W of power. Vibrational generators are energy harvesters that convert environmental vibrations into electrical power via the inertial force of pendulums. In conventional generators that use simple vibration, the power is less than 10 mW for a wearable size because vibrations in the natural environment are as low as 1 Hz. Gyroscopic generators increase the inertial force by rotating a pendulum at high speed and creating a gyro effect. In this generator, a palm-size product that generates 0.1 W and weighs 280 g has already been commercialized, but this device operates only under a particular vibration that synchronizes rotor precession and stalls under random vibration. To solve this problem, in this research, two gimbals and a precession spring are introduced to support the rotor. We developed a prototype generator with straight tracks measuring 16 cm × 11 cm × 12 cm with a mass of 980 g. Under a vibration of 4 Hz and ±20 degrees, power generation of 1.6 W was confirmed. Next, a prototype circular track was made. Power generation of 0.2 W with a vibration of 1 Hz and ±90 degrees was confirmed. Finally, a simple formula to estimate the upper limit of the generation power is derived. It is suggested that the circular-type generator is suitable for low-frequency vibration and can generate twice the power of a straight-type generator.


Author(s):  
Rajib Mukherjee ◽  
Chad B. O'Neal

The advancement in the field of wireless electronics for use in embedded systems and control system technologies is limited by the availability of efficient and portable power generation system. Harvesting ambient energy provides an excellent option to energize these low power wireless electronic applications. Low frequency vibrational energy scavenging of microelectromechanical system (MEMS) utilizing piezoelectric power generation can effectively serve this purpose. Initial fabrication has been carried out in terms of PZT film characterization, initial testing to verify the piezoelectric nature of the as coated PZT film, optimization of 125 μm thick nickel electroplating, and innovative cantilever release process based on inductively coupled plasma etching (Bosch Process) to increase the yield of working cantilever arrays on a die. An optimized process flow for the prototype fabrication was proposed and lead zirconium titanate (PZT) thin film deposition by sol-gel was characterized on three different bottom electrodes. The net effective yield in terms of working cantilevers on a die was increased to about 80% of over 500 cantilevers on a die. X-ray diffraction results revealed the perovskite phase formation of the as-coated PZT film with a [111] predominant crystal orientation. The as-coated PZT film was poled and the initial testing confirmed the piezoelectric nature of the film. The desired cantilever configuration was modeled such that its natural frequency lies approximately in the 200 Hz range while ensuring that the maximum stress generated in the structure does not exceed the yield strength of the material both in the static stage and in the dynamic stage. It was observed that positioning of the mass was a significant factor influencing the natural frequency of the structure. The analysis was performed for cantilever configurations made of silica, PZT, and nickel in which the effect of the thinner layers (electrodes) has been ignored. It was found that this configuration yields a natural frequency of 255 Hz which lies in the desired range of frequency (100-500 Hz).


Author(s):  
Rajesh Govindan ◽  
Suraj Prakash Harsha

In this paper, the dynamic characteristics of the human body were investigated by developing a 3-D finite element model based on 50th percentile anthropometric data for a 54 kg Indian male subject in standing position by considering human body segments as an ellipsoid. The finite element modal analysis is carried out to extract several low-frequency vibration modes and its vibration mode shapes were presented in this paper. The results show that the lowest natural frequency of the standing passenger model occurs in the fore-and-aft direction. The second natural frequency occurs in the lateral direction and the first order natural frequency of the standing passenger model in the vertical direction occurs at 5.379 Hz. The model will be helpful to predict the vibration response of human body under various vibration environment encounters in the railway vehicle.


2012 ◽  
Vol 468-471 ◽  
pp. 2802-2805
Author(s):  
Xue Tao Huang ◽  
Liang Gu ◽  
Wei Wei Lv

The low frequency vibration of vehicle is very popular. The vibration can reduce ride comfort and cause early damage of part, so we must do something to reduce it. But the vibration has more complex impact factors, so it is very difficult to solve it. This paper has studied a new method to reduce it. It has studied the natural frequencies of the frame on the platform of OptiStruct software. Through the research, we find that the first order mode natural frequency of the frame is close to the external motivation, which is caused by moving unbalance of wheels. It leads to the resonance phenomenon, which is the main reason for vehicle low frequency vibration. In order to improve the vibration, this paper has researched the principle of SIMP topology optimization technology, and searched for the topology frame structure, whose first mode natural frequency is far away from the external motivation. Finally, this paper shows a new design for the frame, which reduces the low frequency vibration of vehicle greatly.


Author(s):  
Kuo-Shen Chen

Wireless sensor networks become increasingly important in modern life for structural health monitoring and other related applications. In these applications, due to their overall sensor populations and possible covered measurement areas, the replacement of batteries becomes a difficult and unrealistic task. As a result, energy harvesters to convert environment wasted vibration energy into electricity for powering those sensor nodes become important and many miniaturized device have been realized by using MEMS technology. In order to achieve optimal performance, the energy harvester must be operated at the resonance frequency. However, the vibration frequencies of environmental vibrations are usually much less than that of those miniaturizing energy harvesters and this fact could be a major barrier for energy harvesting performance. In this paper, a new piezoelectric energy scavenging concept is proposed and demonstrated to convert environmental vibrations into electricity. Unlike previous MEMS-based piezoelectric energy harvesters, which suffer from matching between environmental low frequency vibration and the much higher system natural frequency, this work proposes a novel beating design using polymer piezoelectric materials in collaborating with a beating mechanism. That is, by creating impact force via the low frequency vibration motion from the mechanism, it is possible to excite system natural frequency by the low frequency environmental vibrations and it is possible to operate the entire system at the natural frequency. This work contains details in presenting this idea, designing piezoelectric harvester systems with flexible PVDF elements, exploring their vibration characteristics, and energy accumulating strategies by using a capacitor with a full-bridged rectifiers or a boost conversion. By experimental characterization, the overall harvesting efficiency of the proposed design is much greater than that from the design without the beating mechanism. It indicates that the efficiency is significantly improved and the proposed translational design could potentially improve the future design approach for piezoelectric energy harvesters significantly. In summary, this preliminary study shows that it is a feasible scheme for the application of piezoelectric materials in harvesting electricity from environmental vibrations. Although this work is still in its initial phase, the results and conclusions of this work are still invaluable for guiding the development of high efficient piezoelectric harvesters in the future.


Author(s):  
Hector A. Tinoco

In this study, a numerical approach is established to design a beam coupled to a Voice Coil Motor (VCM) with the aim to maximize the displacement in the inductive transducer. A finite element model is developed to simulate a VCM with different beams applying a harmonic analysis. The VCM is extracted from a recycled hard disk drive (HDD) and a parametric modal analysis is performed to identify the material parameters of the HDD and the beam. These parameters are obtained comparing the real vibration modes and natural frequencies (VCM-beam) with those determined from the finite element model. A numerical-experimental case study is carried out to demonstrate that if a beam is designed for a specific low frequency vibration between 0 and [Formula: see text], the displacements are maximized in the VCM. For this purpose, real acceleration measurements taken from three individuals are used to provide the vibration signals in the numerical model. A beam is designed for one of the individuals using the natural frequency values determined from the measured signals. Results show that the displacements are maximized in the model which coincides with the natural frequency of the chosen individual. The main purpose of this research is to establish a design tool for energy harvesting purposes with VCM based on low frequency vibration sources as for example gait motions.


2013 ◽  
Vol 470 ◽  
pp. 807-813
Author(s):  
Li Rui ◽  
Yi Cheng Xiao ◽  
Jian Zhong Pei ◽  
Xiao Kang Zhao

This article determine the wheel load on the role of piezoelectric vibrator in the way as the low-frequency vibration force through analyzing the wheel load, and the loading frequency is 10Hz;in this paper, combining with asphalt roadbed structural response, we get that the piezoelectric conversion device that between the above layer and the middle layer generate optimal performance adopting the theoretical calculation, a single piezoelectric vibrator can generate the electricity by a 2.62 mJ, what provides a theoretical support for the pavement performance of the piezoelectric material.


2011 ◽  
Vol 105-107 ◽  
pp. 286-293 ◽  
Author(s):  
Jing Hua Xie ◽  
Ke Tian ◽  
Li He ◽  
Tian Ren Yang ◽  
Xiang Heng Zhu

The hydraulic long-straight pipeline system of the shield machine is to be studied in this paper. Modal parameters of the hydraulic long-straight pipeline whose length is 8m under three kinds of spans (single span, double spans and four spans) were measured and analyzed. Considering the inherent vibration characteristics of the shield machine, we limited the natural frequency of the multi-span long straight pipeline studied within the range of 0~ 200Hz.What the experiment shows is as follows: Firstly, the natural frequency of the hydraulic long-straight pipeline is densely distributed mainly in the low frequency; Secondly, the natural frequencies of vibration in the horizontal plane are slightly higher than those of corresponding orders in the vertical plane, although the difference is little; In addition, by increasing the number of supports, pipeline span can be reduced and the natural frequencies of pipeline can be significantly increased, but this will make the vibration mode change irregularly.


Sign in / Sign up

Export Citation Format

Share Document