micro power generator
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Daniel Floyd ◽  
Mahmoud Shafik

This paper presents an ultrasonic micro power generator using the piezoelectric direct effect phenomena. The micro power generator consists of 2 main elements, a movement matt including PZT elements and an energy harvesting circuit. The movement matt is made up of a four PZT elements each element creating a cantilever beam. The energy harvesting circuit is made up of an LTC3588 Evaluation Board and an LDR night light. Computer simulation and modelling using finite element analysis for the proposed generation method is discussed and used in the design and development process. Finite element analysis has been used to evaluate the PZT structure by performing an algebraic solution of a set of equations, describing an ideal model structure, with a finite number of variables. The simulation and modelling enabled to select the material and best method of operation. A prototype of the proposed generator was built and tested. This demonstrated that piezoelectric material could produce up to 36V, although the overall impedance of such devices was shown to be linear depending on the force applied with an average of 36MΩ. The Energy harvesting circuit allowed an output super capacitor to be step charged taking an average time of 35-minutes to charge and 2-minutes to discharge through the selected load.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 861
Author(s):  
Yongxin Ma ◽  
Jia Wang ◽  
Chong Li ◽  
Xiaorui Fu

In order to realize the collection of micro or small vibration energy, a micro-power generator based on two piezoelectric Macro Fiber Composite (MFC) films is proposed. The piezoelectric generator consists of a double piezoelectric MFCs type vibrator and a displacement amplifying mechanism, which can achieve the output of high energy density. The design process of this kind of piezoelectric generator is presented. Based on LabVIEW platform and NI Data Acquisition (DAQ) card, the output voltage acquisition system of the generator is built, and the output voltage and power are collected and calculated. Experimental results show that the maximum output power is 6.2 mW under transient excitation. Under continuous excitation with a load resistance of 10 kΩ and an excitation frequency of 26 Hz, the maximum output of the generator is up to 11.9 mW. The research results lay a foundation for the application of the proposed micro-power piezoelectric generator.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 573-580 ◽  
Author(s):  
Yuansheng Chen ◽  
Cong Gu ◽  
Hao Wang ◽  
Jinhao Qiu ◽  
Sunchong Zhao

A micro-power-generator is developed with piezoelectric ceramics, which can convert the structural vibration energy generated by wind power into electricity to provide energy for micro-devices such as wireless sensor nodes. The vibration modes of the device are analyzed. The standard interface circuit for piezoelectric energy recovery and LTC3588-1 voltage stabilization circuit are selected, and the hardware circuit of the device is designed. The output voltage and power characteristics of micro-power-generator were analyzed under different loads, frequencies and amplitudes. The experimental results show that under the same wind speed, When the blunt body is a cuboid, the power generation effect of this device is the best under the optimal load, with the maximum output power of 350.7 μW. Under the same load with the same shape and structure, the load voltage and output power increase with the increase of wind speed.


2020 ◽  
Vol 261 ◽  
pp. 114386 ◽  
Author(s):  
B. Aravind ◽  
Bhupendra Khandelwal ◽  
P.A. Ramakrishna ◽  
Sudarshan Kumar

2019 ◽  
Vol 40 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Jiabin Yan ◽  
Xiaoping Liao ◽  
Sichao Ji ◽  
Sen Zhang

Sign in / Sign up

Export Citation Format

Share Document